## Love-for-Variety

Kiminori Matsuyama Northwestern University Philip Ushchev *ECARES, Université Libre de Bruxelles* 

Updated: 2024-11-17; 18:22

Macro/International Workshop University of Chicago March 4, 2024 **Some Backgrounds** 

# "Non-CES Aggregators: A Guided Tour" (Annual Review of Economics. 2023)

- We all love using CES, because it is tractable.
- CES is tractable because it has many knife-edge properties, which also make it restrictive.
- For some purposes, we need to drop some properties.
- Many look for an alternative, such as Stone-Geary, translog, etc. But they have their own drawbacks.
- My Approach: Relax only those properties we need to drop and keep the rest to retain the tractability of CES as much as possible.
- Depending on which properties are kept, we come up with many different classes of non-CES demand systems.
- Which class should be used depends on the applications.



**Love-for-Variety** 

Introduction

Love-for-Variety (LV): Productivity (utility) gains from increasing variety of intermediate inputs (consumer goods).

- A natural consequence of the convexity of the production technologies (preferences).
- Willingness to pay for new inputs (goods); Dixit-Stiglitz (1977), Krugman (1980), Ethier (1982), Romer (1987), etc.
- A central concept in economic growth (Grossman-Helpman 1993; Gancia-Zillibotti 2005, Acemoglu 2008), international trade (Helpman-Krugman 1995), and economic geography (Fujita-Krugman-Venables 1999).
- Though commonly discussed in monopolistic competition settings, LV is also a useful concept in other contexts, such as gains from trade in Armington-type competitive models.

Little is known about how LV depends on the underlying demand system outside of CES with gross substitutes:

- The LV measure under CES:  $\mathcal{L} = 1/(\sigma 1) > 0$ , where  $\sigma > 1$  happens to represent 2 related but distinct concepts,
  - o the elasticity of substitution (ES) across varieties.
  - o the price elasticity (PE) of demand for each variety.
  - ✓ One appealing feature: LV is smaller when ES is larger and when PE is larger.
  - ✓ One unappealing feature: LV is independent of how many varieties are already available.

For this reason, some may prefer "Ideal variety approach," but it is less tractable than "Love-for-variety approach."

## The Questions: What happens outside of CES?

- How is LV related to the underlying demand structure, such as ES or PE? Note: ES and PE are distinct concepts, which could play different roles shaping LV outside of CES.
- Under what conditions does LV decline as more varieties become available?
- Can we develop "Love-for-variety approach" with diminishing LV, which is also tractable?

#### **Our Approach to These Questions**

- Define Substitutability,  $\sigma(V)$ , & Love-for-Variety,  $\mathcal{L}(V)$ ; both depend only on V (the mass of available varieties). • Under CES, there are independent of V, as  $\sigma(V) = \sigma$ ;  $\mathcal{L}(V) = 1/(\sigma - 1)$ .
- One's intuition might say that Increasing Substitutability implies Diminishing love-for-variety.

$$\sigma'(V) > 0 \Longrightarrow \mathcal{L}'(V) < 0.$$

- It turns out that this is NOT true under general symmetric homothetic demand systems. Little can be said about the relations btw PE,  $\sigma(V)$  &  $\mathcal{L}(V)$ . "Almost anything goes."
- To capture the above intuition, we need to impose more restrictions. Homotheticity (and symmetry) just too broad.

We turn to the 3 classes of homothetic demand systems:

H.S.A. (Homothetic Single Aggregator)
HDIA (Homothetic Direct Implicit Additivity)
HIIA (Homothetic Indirect Implicit Additivity)

- Pairwise disjoint with the sole exception of CES.
- PE can be written as  $\zeta_{\omega} \equiv \zeta\left(\frac{p_{\omega}}{\mathcal{A}(\mathbf{p})}\right) \equiv \zeta^*\left(\frac{x_{\omega}}{\mathcal{A}^*(\mathbf{x})}\right)$ , where  $\mathcal{A}(\mathbf{p})$  or  $\mathcal{A}^*(\mathbf{x})$  is linear homogeneous, a sufficient statistic for the cross-variety effects.

Main Results: In each of these 3 classes,

- $\sigma'(V) > 0 \Leftrightarrow \text{The } 2^{\text{nd}} \text{ law.}$
- $\sigma'(V) \geq 0 \Rightarrow \mathcal{L}'(V) \leq 0$ . The converse is not true.
- $\mathcal{L}'(V) = 0 \Leftrightarrow \sigma'(V) = 0 \Leftrightarrow \zeta(\cdot) = \zeta^*(\cdot) = const.$ , which occur iff CES.



The 3 classes offer a tractable way of capturing the intuition that gains from increasing variety is diminishing, if varieties are more substitutable in the presence of more varieties.

The 3 classes also are useful as building blocks for more general (but not fully general) demand systems.

## Some Remarks Before Proceeding,

- This paper is all about the demand side of LV, hence applicable to a wide range of models.
- We deliberately make no assumption on the supply side. For example,
  - o **Armington-type models**, where each differentiated input (or consumer good) is produced and sold by competitive producers, and the mass of available varieties, *V*, changes exogenously due to trade liberalization
  - Central planning problems, where the benevolent planner chooses V optimally subject to the innovation cost.
  - Oligopoly models with a finite number of oligopolistic firms, each of which innovate and produce a continuum range of varieties.
  - o **Monopolistically competitive models**, with a continuum of monopolistically competitive firms innovating and producing zero measure of varieties and selling them with positive markups.
- Neither symmetry nor homotheticity are as restrictive as they look.
  - o By nesting symmetric homothetic demand systems into a upper-tier asymmetric/nonhomothetic demand system, we can create an asymmetric/nonhomothetic demand system.
  - o Moreover, one key message is "Almost anything goes," that symmetry/homotheticity restrictions are *not restrictive enough* that we need to look for more restrictions to make further progress.

**General Symmetric Homothetic Demand Systems** 

## General Symmetric Homothetic (Input) Demand System: A Quick Refresher of Duality Theory

Consider homothetic demand systems for a continuum of differentiated inputs generated by symmetric CRS production technology.

| <b>CRS Production Function</b>                                                             | <b>Unit Cost Function</b>                                                                  |
|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| $X(\mathbf{x}) \equiv \min_{\mathbf{p}} \{ \mathbf{p} \mathbf{x}   P(\mathbf{p}) \ge 1 \}$ | $P(\mathbf{p}) \equiv \min_{\mathbf{x}} \{ \mathbf{p} \mathbf{x}   X(\mathbf{x}) \ge 1 \}$ |

 $\mathbf{x} = \{x_{\omega}; \omega \in \overline{\Omega}\}$ : the input quantity vector;  $\mathbf{p} = \{p_{\omega}; \omega \in \overline{\Omega}\}$ : the input price vector.

 $\overline{\Omega}$ , a continuum of all potential input varieties.  $\Omega \subset \overline{\Omega}$ , the set of available input varieties, with its mass  $V \equiv |\Omega|$ .

 $\overline{\Omega} \backslash \Omega$ : the set of unavailable varieties,  $x_{\omega} = 0$  and  $p_{\omega} = \infty$  for  $\omega \in \overline{\Omega} \backslash \Omega$ .

Inputs are inessential, i.e.,  $\overline{\Omega} \setminus \Omega \neq \emptyset$  doesn't imply  $X(\mathbf{x}) = 0 \Leftrightarrow P(\mathbf{p}) = \infty$ .

## **Duality Principle:**

Either  $X(\mathbf{x})$  or  $P(\mathbf{p})$  can be a *primitive*, if linear homogeneity, monotonicity & strict quasi-concavity satisfied

#### **Demand System:**

| Demand Curve (from Shepherd's Lemma)                                   | Inverse Demand Curve                                                   |
|------------------------------------------------------------------------|------------------------------------------------------------------------|
| $x_{\omega} = \frac{\partial P(\mathbf{p})}{\partial x} X(\mathbf{x})$ | $p_{\omega} = P(\mathbf{p}) \frac{\partial X(\mathbf{x})}{\partial x}$ |
| $\partial p_{\omega}$                                                  | $\partial x_{\omega}$                                                  |

And, from Euler's Homogenous Function Theorem,

$$\mathbf{p}\mathbf{x} = \int_{\Omega} p_{\omega} x_{\omega} d\omega = \int_{\Omega} p_{\omega} \frac{\partial P(\mathbf{p})}{\partial p_{\omega}} X(\mathbf{x}) d\omega = \int_{\Omega} P(\mathbf{p}) \frac{\partial X(\mathbf{x})}{\partial x_{\omega}} x_{\omega} d\omega = P(\mathbf{p}) X(\mathbf{x}) = E.$$

The value of inputs is equal to the total value of output under CRS.

Budget Share of 
$$\omega \in \Omega$$
: 
$$s_{\omega} \equiv \frac{p_{\omega} x_{\omega}}{\mathbf{p} \mathbf{x}} = \frac{p_{\omega} x_{\omega}}{P(\mathbf{p}) X(\mathbf{x})} = \frac{\partial \ln P(\mathbf{p})}{\partial \ln p_{\omega}} \equiv s(p_{\omega}, \mathbf{p}) = \frac{\partial \ln X(\mathbf{x})}{\partial \ln x_{\omega}} \equiv s^*(x_{\omega}, \mathbf{x})$$

Under general CRS, little restrictions on  $s_{\omega}$  beyond homogeneity of degree zero in  $(p_{\omega}, \mathbf{p})$  or in  $(x_{\omega}, \mathbf{x}) \rightarrow s_{\omega} = s(1, \mathbf{p}/p_{\omega}) = s^*(1, \mathbf{x}/x_{\omega})$ , depends on the *distribution* of the prices (quantities) divided by its own price (quantity).

**Definition: Gross Substitutability** 
$$\frac{\partial \ln s(p_{\omega}; \mathbf{p})}{\partial \ln p_{\omega}} < 0 \Leftrightarrow \frac{\partial \ln s^{*}(x_{\omega}; \mathbf{x})}{\partial \ln x_{\omega}} > 0$$

Price Elasticity of Demand for 
$$\omega \in \Omega$$
 
$$\zeta_{\omega} \equiv -\frac{\partial \ln x_{\omega}}{\partial \ln p_{\omega}} = \zeta(p_{\omega}; \mathbf{p}) \equiv 1 - \frac{\partial \ln s(p_{\omega}; \mathbf{p})}{\partial \ln p_{\omega}} = \zeta^{*}(x_{\omega}; \mathbf{x}) \equiv \left[1 - \frac{\partial \ln s^{*}(x_{\omega}; \mathbf{x})}{\partial \ln x_{\omega}}\right]^{-1} > 1.$$

Under general CRS, little restrictions on  $\zeta_{\omega}$ , beyond the homogeneity of degree zero in  $(p_{\omega}, \mathbf{p})$  or in  $(x_{\omega}, \mathbf{x}) \rightarrow \zeta_{\omega} = \zeta(1, \mathbf{p}/p_{\omega}) = \zeta^*(1, \mathbf{x}/x_{\omega})$ , depends on the whole *distribution* of prices (quantities) divided by its own price (quantity).

**Definition:** The 2<sup>nd</sup> Law of Demand 
$$\frac{\partial \ln \zeta(p_{\omega}; \mathbf{p})}{\partial \ln p_{\omega}} > 0 \Leftrightarrow \frac{\partial \ln \zeta^*(x_{\omega}; \mathbf{x})}{\partial \ln x_{\omega}} < 0.$$

Clearly, CES does not satisfy the 2<sup>nd</sup> Law.

## **Substitutability Measure Across Different Varieties**

$$\mathbf{1}_{\Omega} \equiv \{(1_{\Omega})_{\omega}; \omega \in \overline{\Omega}\},\$$

where 
$$(1_{\Omega})_{\omega} \equiv \begin{cases} 1 & \text{for } \omega \in \Omega \\ 0 & \text{for } \omega \in \overline{\Omega} \setminus \Omega \end{cases}$$

$$\mathbf{1}_{\Omega}^{-1} \equiv \left\{ \left(1_{\Omega}^{-1}\right)_{\omega}; \omega \in \overline{\Omega} \right\},$$

where 
$$(1_{\Omega}^{-1})_{\omega} \equiv \begin{cases} 1 & \text{for } \omega \in \Omega \\ \infty & \text{for } \omega \in \overline{\Omega} \setminus \Omega \end{cases}$$

Note: 
$$\int_{\Omega} (1_{\Omega})_{\omega} d\omega = \int_{\Omega} (1_{\Omega}^{-1})_{\omega} d\omega = |\Omega| \equiv V$$
.

At the symmetric patterns,  $\mathbf{p} = p \mathbf{1}_{\Omega}^{-1}$  and  $\mathbf{x} = x \mathbf{1}_{\Omega}$ ,

$$s_{\omega} = s(1, \mathbf{p}/p_{\omega}) = s^*(1, \mathbf{x}/x_{\omega}) = s(1, \mathbf{1}_{\Omega}^{-1}) = s^*(1, \mathbf{1}_{\Omega}) = 1/V$$

$$\zeta_{\omega} = \zeta(1, \mathbf{p}/p_{\omega}) = \zeta^*(1, \mathbf{x}/x_{\omega}) = \zeta(1, \mathbf{1}_{\Omega}^{-1}) = \zeta^*(1, \mathbf{1}_{\Omega}) > 1$$

Clearly, this depends only on *V*. We propose:

**Definition:** The substitutability measure across varieties is defined by

$$\sigma(V) \equiv \zeta(1; \mathbf{1}_{\Omega}^{-1}) = \zeta^*(1; \mathbf{1}_{\Omega}) > 1.$$

We call the case of  $\sigma'(V) > (<)0$  for all V > 0, the case of *increasing (decreasing) substitutability*.

Alternatively, we can define the substitutability by the Allen-Uzawa elasticity of substitution btw  $\omega$  and  $\omega'$ ,  $AES(p_{\omega}, p_{\omega'}, \mathbf{p})$ , at the symmetric patterns,  $\mathbf{p} = p\mathbf{1}_{\Omega}^{-1}$ . It turns out that these definitions are equivalent because  $\sigma(V) = AES(p, p, p\mathbf{1}_{\Omega}^{-1}) = AES(1, 1, \mathbf{1}_{\Omega}^{-1})$ .

*Note:* In general, the 2<sup>nd</sup> Law is neither sufficient nor necessary for increasing substitutability,  $\sigma'(V) > 0$ .

**Love-for-Variety Measure:** Commonly defined by the productivity gain from a higher V, holding xV

$$\left. \frac{d \ln X(\mathbf{x})}{d \ln V} \right|_{\mathbf{x} = x \mathbf{1}_{\Omega}, xV = const.} = \left. \frac{d \ln x X(\mathbf{1}_{\Omega})}{d \ln V} \right|_{xV = const.} = \frac{d \ln X(\mathbf{1}_{\Omega})}{d \ln V} - 1 > 0$$

Alternatively, it may be defined by the decline in  $P(\mathbf{p})$  from a higher V, at  $\mathbf{p} = p\mathbf{1}_{\Omega}^{-1}$ , holding p constant.

$$-\frac{d \ln P(\mathbf{p})}{d \ln V}\bigg|_{\mathbf{p}=p\mathbf{1}_{\Omega}^{-1}, \ p=const.} = -\frac{d \ln P(\mathbf{1}_{\Omega}^{-1})}{d \ln V} > 0.$$

Both are functions of V only, and equivalent because, by applying  $\mathbf{x} = x \mathbf{1}_{\Omega}$  and  $\mathbf{p} = p \mathbf{1}_{\Omega}^{-1}$  to  $\mathbf{p} \mathbf{x} = P(\mathbf{p})X(\mathbf{x})$ ,

$$pxV = pP(\mathbf{1}_{\Omega}^{-1})xX(\mathbf{1}_{\Omega}) \Longrightarrow -\frac{d\ln P(\mathbf{1}_{\Omega}^{-1})}{d\ln V} = \frac{d\ln X(\mathbf{1}_{\Omega})}{d\ln V} - 1 > 0.$$

**Definition**. *The love-for-variety measure* is defined by:

$$\mathcal{L}(V) \equiv \frac{d \ln P(\mathbf{1}_{\Omega}^{-1})}{d \ln V} = \frac{d \ln X(\mathbf{1}_{\Omega})}{d \ln V} - 1 > 0.$$

*Note:*  $\mathcal{L}(V) > 0$  is guaranteed by the strict quasi-concavity.

#### **Example: Standard CES with Gross Substitutes:**

$$X(\mathbf{x}) = Z \left[ \int_{\Omega} x_{\omega}^{1 - \frac{1}{\sigma}} d\omega \right]^{\frac{\sigma}{\sigma - 1}} \iff P(\mathbf{p}) = \frac{1}{Z} \left[ \int_{\Omega} p_{\omega}^{1 - \sigma} d\omega \right]^{\frac{1}{1 - \sigma}},$$

where  $\sigma > 1$ . (Z > 0 is TFP or affinity in the preference, in the context of spatial economics)

|                         | Definition                                                                                                                                         | Under CES                                                                      |
|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| <b>Price Elasticity</b> | $\zeta_{\omega} \equiv -\frac{\partial \ln x_{\omega}}{\partial \ln p_{\omega}} = \zeta(p_{\omega}; \mathbf{p}) = \zeta^*(x_{\omega}; \mathbf{x})$ | $\zeta(p_{\omega}; \mathbf{p}) = \zeta^*(x_{\omega}; \mathbf{x}) = \sigma > 1$ |
| Substitutability        | $\sigma(V) \equiv \zeta(1; 1_{\Omega}^{-1}) = \zeta^*(1; 1_{\Omega})$                                                                              | $\sigma(V) = \sigma > 1$                                                       |
| Love-for-variety        | $\mathcal{L}(V) \equiv \frac{d \ln P(1_{\Omega}^{-1})}{d \ln V} = \frac{d \ln X(1_{\Omega})}{d \ln V} - 1 > 0.$                                    | $\mathcal{L}(V) = \frac{1}{\sigma - 1} > 0.$                                   |

#### Under Standard CES,

- Price elasticity of demand,  $\zeta(p_{\omega}; \mathbf{p}) = \zeta^*(x_{\omega}; \mathbf{x})$ , is independent of  $\mathbf{p}$  or  $\mathbf{x}$  and equal to  $\sigma$ .
- Substitutability,  $\sigma(V)$ , is independent of V and equal to  $\sigma$ .
- Love-for-variety,  $\mathcal{L}(V)$ , is independent of V, and equal to a constant,  $\mathcal{L}(V) = \mathcal{L} = 1/(\sigma 1)$ , inversely related to  $\sigma$ .

These properties do not hold under general homothetic demand systems.

Example: Generalized CES with Gross Substitutes a la Benassy (1996).

$$X(\mathbf{x}) = Z(\mathbf{V}) \left[ \int_{\Omega} x_{\omega}^{1 - \frac{1}{\sigma}} d\omega \right]^{\frac{\sigma}{\sigma - 1}} \iff P(\mathbf{p}) = \frac{1}{Z(\mathbf{V})} \left[ \int_{\Omega} p_{\omega}^{1 - \sigma} d\omega \right]^{\frac{1}{1 - \sigma}},$$

Note: Z(V) allows variety to have direct externalities to TFP (or affinity)

|                         | Definition                                                                                                                                           | <b>Under Generalized CES</b>                                                   |
|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| <b>Price Elasticity</b> | $\zeta_{\omega} \equiv -\frac{\partial \ln x_{\omega}}{\partial \ln p_{\omega}} = \zeta(p_{\omega}; \mathbf{p}) = \zeta^{*}(x_{\omega}; \mathbf{x})$ | $\zeta(p_{\omega}; \mathbf{p}) = \zeta^*(x_{\omega}; \mathbf{x}) = \sigma > 1$ |
| Substitutability        | $\sigma(V) \equiv \zeta(1; 1_{\Omega}^{-1}) = \zeta^*(1; 1_{\Omega})$                                                                                | $\sigma(V) = \sigma > 1$                                                       |
| Love-for-variety        | $\mathcal{L}(V) \equiv \frac{d \ln P(1_{\Omega}^{-1})}{d \ln V} = \frac{d \ln X(1_{\Omega})}{d \ln V} - 1 > 0.$                                      | $\mathcal{L}(V) = \frac{1}{\sigma - 1} + \frac{d \ln Z(V)}{d \ln V}.$          |

Under Generalized CES,

- Price Elasticity,  $\zeta(p_\omega; \mathbf{p}) = \zeta^*(x_\omega; \mathbf{x})$ , and Substitutability,  $\sigma(V)$ , are not affected by  $\frac{d \ln Z(V)}{d \ln V}$ .
- $\frac{d \ln Z(V)}{d \ln V}$ , the Benassy residual, "accounts for" the discrepancy between the LV implied by CES and the observed LV.
  - o Benassy (1996) set  $\frac{d \ln Z(V)}{d \ln V} = \nu \frac{1}{\sigma 1}$ , so that  $\mathcal{L}(V) = \nu$  is a separate parameter independent of  $\sigma$ .
  - $\circ$  If we instead assume that  $\frac{d \ln Z(V)}{d \ln V}$  is independent of  $\sigma$ ,  $\mathcal{L}(V)$  is still inversely related to  $\sigma$ .

Even if you believe in the Benassy residual, your estimate of its magnitude depends on the CES structure.

General Homothetic Demand System: The relation btw  $\zeta(p_\omega; \mathbf{p}) = \zeta^*(x_\omega; \mathbf{x}), \sigma(V), \& \mathcal{L}(V)$  can be complex.

- Whether Marshall's 2<sup>nd</sup> Law holds or not says little about the derivatives of  $\sigma(V)$  and  $\mathcal{L}(V)$ .
- $\sigma(V)$  and  $\mathcal{L}(V)$  could be positively related.

#### (Counter) Example: Weighted Geometric Mean of Standard Synmetric CES with Gross Substitutes:

$$X(\mathbf{x}) \equiv \exp\left[\int_{1}^{\infty} \ln X(\mathbf{x}; \sigma) \, dF(\sigma)\right], \qquad \text{where} \qquad [X(\mathbf{x}; \sigma)]^{1 - \frac{1}{\sigma}} \equiv \int_{\Omega} x_{\omega}^{1 - \frac{1}{\sigma}} \, d\omega$$

and  $F(\cdot)$  is a c.d.f. of  $\sigma \in (1, \infty)$ , satisfying  $\int_{1}^{\infty} dF(\sigma) = 1$ .

|                         | Definition                                                                                                         | Under Weighted Geometric Mean of CES                                                                                                                                                                                                             |
|-------------------------|--------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Price Elasticity</b> | $\zeta_{\omega} \equiv -\frac{\partial \ln x_{\omega}}{\partial \ln p_{\omega}} = \zeta^*(x_{\omega}; \mathbf{x})$ | $\zeta^*(x_{\omega}; \mathbf{x}) = E_F\left((x_{\omega})^{-\frac{1}{\sigma}} / (X(\mathbf{x}; \sigma))^{1-\frac{1}{\sigma}}\right) / E_F\left((x_{\omega})^{-\frac{1}{\sigma}} / \sigma (X(\mathbf{x}; \sigma))^{1-\frac{1}{\sigma}}\right) > 1$ |
| Substitutability        | $\sigma(V) \equiv \zeta^*(1; 1_{\Omega})$                                                                          | $\sigma(V) = \frac{1}{E_F(1/\sigma)} > 1$                                                                                                                                                                                                        |
| Love-for-variety        | $\mathcal{L}(V) \equiv -\frac{d \ln \psi(V)}{d \ln V} - 1 > 0$                                                     | $\mathcal{L}(V) = E_F\left(\frac{1}{\sigma - 1}\right) > 0$                                                                                                                                                                                      |

- PE,  $\zeta^*(x_\omega; \mathbf{x})$ , is not constant, and *violates* the Marshall's 2<sup>nd</sup> Law.
- $\sigma(V)$  and  $\mathcal{L}(V)$  are both constant, *independent* of V.
- The range of  $\sigma(V)$  and  $\mathcal{L}(V)$  is  $0 < \frac{1}{\sigma(V)-1} \le \mathcal{L}(V) < \infty$ , where the equality holds iff F is degenerate.
- Easy to construct a parametric family of F, such that  $\sigma(V)$  and  $\mathcal{L}(V)$  are positively related.

Three Classes of Symmetric Homothetic Demand Systems

However, it is intuitive to think that, as input varieties are more substitutable,

- the price elasticity of demand for each variety become larger,
- the love-for-variety measure become smaller.

Homotheticity is too general to capture this intuition!! It is NOT restrictive enough.

In search for additional restrictions to capture this intuition, we turn to

## **Three Classes of Symmetric CRS Production Functions:**

- **✓** Homothetic Single Aggregator (H.S.A.)
- **✓** Homothetic Direct Implicit Additivity (HDIA)
- **✓** Homothetic Indirect Implicit Additivity (HIIA)



## 3 Classes of Symmetric CRS Production Functions (with Gross Substitutes & Inessentiality)

## **Homothetic Direct Implicit Additivity (HDIA):**

$$\int_{\Omega} \phi\left(\frac{Zx_{\omega}}{X(\mathbf{x})}\right) d\omega \equiv \int_{\Omega} \phi\left(\frac{x_{\omega}}{\hat{X}(\mathbf{x})}\right) d\omega \equiv 1$$

 $\phi(\cdot): \mathbb{R}_+ \to \mathbb{R}_+$  is independent of Z > 0, TFP.

 $\phi(0) = 0; \phi(\infty) = \infty; \phi'(y) > 0 > \phi''(y), -y\phi''(y)/\phi'(y) < 1, \text{ for } \forall y \in (0, \infty).$ 

CES with  $\phi(y) = (y)^{1-1/\sigma}$ .

## **Homothetic Indirect Implicit Additivity (HIIA):**

$$\int_{\Omega} \theta \left( \frac{p_{\omega}}{ZP(\mathbf{p})} \right) d\omega \equiv \int_{\Omega} \theta \left( \frac{p_{\omega}}{\widehat{P}(\mathbf{p})} \right) d\omega \equiv 1$$

 $\theta(\cdot): \mathbb{R}_{++} \to \mathbb{R}_{+}$  is independent of Z > 0 is TFP.

 $\theta(z) > 0, \theta'(z) < 0 < \theta''(z), -z\theta''(z)/\theta'(z) > 1 \text{ for } 0 < z < \bar{z} \le \infty \& \theta(z) = 0 \text{ for } z \ge \bar{z}.$ 

CES with  $\theta(z) = (z)^{1-\sigma}$ .

## Homothetic Single Aggregator (H.S.A.): Two Equivalent Definitions

$$s_{\omega} = \frac{\partial \ln P(\mathbf{p})}{\partial \ln p_{\omega}} = s\left(\frac{p_{\omega}}{A(\mathbf{p})}\right) \quad \text{with} \quad \int_{\Omega} s\left(\frac{p_{\omega}}{A(\mathbf{p})}\right) d\omega \equiv 1 \quad \Leftrightarrow \quad s_{\omega} = \frac{\partial \ln X(\mathbf{x})}{\partial \ln x_{\omega}} = s^*\left(\frac{x_{\omega}}{A^*(\mathbf{x})}\right) \quad \text{with} \quad \int_{\Omega} s^*\left(\frac{x_{\omega}}{A^*(\mathbf{x})}\right) d\omega \equiv 1$$

$$s(\cdot): \mathbb{R}_{+} \to \mathbb{R}_{+} \text{ is independent of } Z > 0, \text{TFP.}$$

$$s^*(\cdot): \mathbb{R}_{+} \to \mathbb{R}_{+} \text{ is independent of } Z > 0, \text{TFP.}$$

 $s(z) > 0, s'(z) < 0 \text{ for } 0 < z < \bar{z} \le \infty; s(z) = 0 \text{ for } z \ge \bar{z}.$   $s^*(0) = 0, s^*(y) > 0, \ 0 < ys^{*'}(y)/s^*(y) < 1.$ 

CES with  $s(z) = \gamma z^{1-\sigma}$ .

CES with  $s^*(y) = \gamma^{1/\sigma}(y)^{1-1/\sigma}$ .

The definition of H.S.A. is independent of Z > 0, TFP, which shows up when we integrate the definition to obtain  $P(\mathbf{p})$  or  $X(\mathbf{x})$ .

#### **Key Properties of the Three Classes**

|        | Budget Sh                                                                                                                                                                    | ares:                                                                                         | Price Elasticity:                                                                                                                    |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
|        | $\sigma m \rho_{\omega}$                                                                                                                                                     | $=s(p_{\omega};\mathbf{p})$                                                                   | $\zeta_{\omega} \equiv -\frac{\partial \ln x_{\omega}}{\partial \ln p_{\omega}} = \zeta(p_{\omega}; \mathbf{p})$                     |
| CES    | $s_{\omega} \equiv \frac{\partial \ln P(\mathbf{p})}{\partial \ln p_{\omega}} = f\left(\frac{p_{\omega}}{P(\mathbf{p})}\right)$                                              | $\Leftrightarrow s_{\omega} \propto \left(\frac{p_{\omega}}{P(\mathbf{p})}\right)^{1-\sigma}$ | $\sigma$                                                                                                                             |
| H.S.A. | $s_{\omega} = s \left( \frac{p_{\omega}}{A(\mathbf{p})} \right)$                                                                                                             | $\frac{P(\mathbf{p})}{A(\mathbf{p})} \neq c$ , unless CES                                     | $\zeta\left(\frac{p_{\omega}}{A(\mathbf{p})}\right);\ \zeta(z) \equiv 1 - \frac{zs'(z)}{s(z)} > 1$                                   |
| HDIA   | $s_{\omega} = \frac{p_{\omega}}{P(\mathbf{p})} (\phi')^{-1} \left( \frac{p_{\omega}}{B(\mathbf{p})} \right)  \frac{P(\mathbf{p})}{B(\mathbf{p})} \neq c, \text{ unless CES}$ |                                                                                               | $\zeta^{D}\left((\phi')^{-1}\left(\frac{p_{\omega}}{B(\mathbf{p})}\right)\right);\ \zeta^{D}(y)\equiv-\frac{\phi'(y)}{y\phi''(y)}>1$ |
| HIIA   | $s_{\omega} = \frac{p_{\omega}}{C(\mathbf{p})} \theta' \left( \frac{p_{\omega}}{P(\mathbf{p})} \right)$                                                                      | $\frac{P(\mathbf{p})}{C(\mathbf{p})} \neq c$ , unless CES                                     | $ \zeta^{I}\left(\frac{p_{\omega}}{\widehat{P}(\mathbf{p})}\right); \ \zeta^{I}(z) \equiv -\frac{z\theta''(z)}{\theta'(z)} > 1. $    |

 $A(\mathbf{p}), B(\mathbf{p}), C(\mathbf{p})$ : all linear homogenous, determined implicitly by the adding-up constraint,  $\int_{\Omega} s_{\omega} d\omega \equiv 1$ .

We focus on these three classes for two reasons.

- They are pairwise disjoint with the sole exception of CES.
- Price elasticity can be written as  $\zeta_{\omega} \equiv \zeta\left(\frac{p_{\omega}}{\mathcal{A}(\mathbf{p})}\right) \equiv \zeta^*\left(\frac{x_{\omega}}{\mathcal{A}^*(\mathbf{x})}\right)$ , where  $\mathcal{A}(\mathbf{p})$  or  $\mathcal{A}^*(\mathbf{x})$  is linear homogenous, a sufficient statistic, which captures all the cross-variety effects.

## **Key Properties of the Three Classes, continued.**

|                                                  | CES                  | H.S.A.                                                                         | HDIA                                                                          | HIIA                                                                |  |
|--------------------------------------------------|----------------------|--------------------------------------------------------------------------------|-------------------------------------------------------------------------------|---------------------------------------------------------------------|--|
| Price Elasticity $\zeta(p_{\omega}; \mathbf{p})$ | σ                    | $\zeta\left(\frac{p_{\omega}}{A(\mathbf{p})}\right);$                          | $\zeta^D\left((\phi')^{-1}\left(\frac{p_\omega}{B(\mathbf{p})}\right)\right)$ | $\zeta^I\left(\frac{p_\omega}{\widehat{P}(\mathbf{p})}\right)$ ;    |  |
| 7 (1 (6) 1 )                                     |                      | $\zeta(z) \equiv 1 - \frac{zs'(z)}{s(z)} > 1$                                  | $\zeta^D(y) \equiv -rac{\phi'(y)}{y\phi''(y)} > 1$                           | $\zeta^{I}(z) \equiv -\frac{z\theta''(z)}{\theta'(z)} > 1$          |  |
| Substitutability $\sigma(V)$                     | σ                    | $\zeta\left(s^{-1}\left(\frac{1}{V}\right)\right)$                             | $\zeta^{D}\left(\phi^{-1}\left(\frac{1}{V}\right)\right)$                     | $\zeta^{I}\left(\theta^{-1}\left(\frac{1}{V}\right)\right)$         |  |
| Love-for-Variety $\mathcal{L}(V)$                | $\frac{1}{\sigma-1}$ | $\Phi\left(s^{-1}\left(\frac{1}{V}\right)\right);$                             | $\frac{1}{\mathcal{E}_{\phi}(\phi^{-1}(1/V))}-1;$                             | $\frac{1}{\mathcal{E}_{\theta}\big(\theta^{-1}(1/V)\big)};$         |  |
|                                                  |                      | $\Phi(z) \equiv \frac{1}{s(z)} \int_{z}^{\bar{z}} \frac{s(\xi)}{\xi} d\xi > 0$ | $0 < \mathcal{E}_{\phi}(y) \equiv \frac{y\phi'(y)}{\phi(y)} < 1$              | $\mathcal{E}_{\theta}(z) \equiv -\frac{z\theta'(z)}{\theta(z)} > 0$ |  |

Main Results: In each of these 3 classes, Under H.S.A., HDIA, and HIIA,

- $\sigma'(V) > 0$  iff the 2<sup>nd</sup> law holds.
- $\sigma'(V) \ge 0$  for all  $V > 0 \Rightarrow \mathcal{L}'(V) \le 0$  for all V > 0. The converse is not true. But,
- $\mathcal{L}'(V) = 0 \Leftrightarrow \sigma'(V) = 0 \Leftrightarrow \zeta(\cdot) = \zeta^*(\cdot) = const.$ , which occur iff CES.

Homothetic Single Aggregator (H.S.A.)

## Symmetric H.S.A. (Homothetic Single Aggregator) DS with Gross Substitutes

**Definition:** A symmetric CRS technology,  $P = P(\mathbf{p})$  is called *homothetic single aggregator* (H.S.A.) if the budget share of  $\omega$  depends solely on a single variable,  $z_{\omega} \equiv p_{\omega}/A$ , its own price  $p_{\omega}$ , normalized by the common price aggregator,  $A = A(\mathbf{p})$ .

$$s_{\omega} \equiv \frac{p_{\omega} x_{\omega}}{\mathbf{p} \mathbf{x}} = \frac{\partial \ln P(\mathbf{p})}{\partial \ln p_{\omega}} = s \left(\frac{p_{\omega}}{A(\mathbf{p})}\right), \quad \text{where} \quad \int_{\Omega} s \left(\frac{p_{\omega}}{A(\mathbf{p})}\right) d\omega \equiv 1.$$

- $s: \mathbb{R}_{++} \to \mathbb{R}_{+}$ : the budget share function, decreasing in the normalized price,  $z_{\omega} \equiv p_{\omega}/A$  for  $s(z_{\omega}) > 0$  with  $\lim_{z \to \bar{z}} s(z) = 0$ . If  $\bar{z} \equiv \inf\{z > 0 | s(z) = 0\} < \infty$ ,  $\bar{z}A(\mathbf{p})$  is the choke price.
- $A = A(\mathbf{p})$ : the common price aggregator, defined implicitly by the adding-up constraint,  $\int_{\Omega} s(p_{\omega}/A)d\omega \equiv 1$ . By construction, the budget shares add up to one.  $A(\mathbf{p})$  linear homogenous in  $\mathbf{p}$  for a fixed  $\Omega$ . A larger  $\Omega$  reduces  $A(\mathbf{p})$ .

Some Special Cases

**CES** with gross substitutes **Translog Cost Function** 

$$s(z) = \gamma z^{1-\sigma}; \qquad \sigma > 1$$

$$s(z) = \gamma \max\{-\ln(z/\bar{z}), 0\}; \qquad \bar{z} < \infty$$

$$s(z) = \gamma \max\left\{\left[\sigma - (\sigma - 1)z^{\frac{1-\rho}{\rho}}\right]^{\frac{\rho}{1-\rho}}, 0\right\} \qquad \sigma > 1; \ 0 < \rho < 1$$

As 
$$\rho \nearrow 1$$
, CoPaTh converges to CES with  $\bar{z} = \left(\frac{\sigma}{\sigma-1}\right)^{\frac{\rho}{1-\rho}} \to \infty$ .

Price Elasticity:  $\zeta_{\omega} = \zeta(p_{\omega}; \mathbf{p}) = 1 - \frac{z_{\omega} s'(z_{\omega})}{s(z_{\omega})} \equiv \zeta(z_{\omega}) > 1$ 

#### Notes:

- A function of a single variable,  $z_{\omega} \equiv p_{\omega}/A(\mathbf{p})$ .
- $\zeta(z_{\omega}) = \sigma > 1$  under CES,  $s(z) = \gamma z^{1-\sigma}$ .
- Marshall's  $2^{\text{nd}}$  law iff  $\zeta'(\cdot) > 0$ , e.g.,  $\zeta(z_{\omega}) = 1 \frac{1}{\ln(z_{\omega}/\bar{z})}$  for translog;  $= \frac{\sigma}{\sigma (\sigma 1)z_{\omega}^{(1-\rho)/\rho}} = \frac{1}{1 (z_{\omega}/\bar{z})^{(1-\rho)/\rho}}$  for CoPaTh.

Unit Cost Function: By integrating  $\frac{\partial \ln P(\mathbf{p})}{\partial \ln p_{\omega}} = s \left( \frac{p_{\omega}}{A(\mathbf{p})} \right)$ ,

$$\frac{A(\mathbf{p})}{P(\mathbf{p})} = c \exp \left[ \int_{\Omega} s \left( \frac{p_{\omega}}{A(\mathbf{p})} \right) \Phi \left( \frac{p_{\omega}}{A(\mathbf{p})} \right) d\omega \right], \text{ where } \Phi(z) \equiv \frac{1}{s(z)} \int_{z}^{\bar{z}} \frac{s(\xi)}{\xi} d\xi > 0.$$

where c > 0 is a constant, proportional to TFP.

#### Notes:

- $P(\mathbf{p})$ : linear homogeneous, monotonic, and strictly quasi-concave, ensuring the integrability of H.S.A.
- $A(\mathbf{p})/P(\mathbf{p})$  is not constant and depends on  $\mathbf{p}$ , with the sole exception of CES, because

$$\frac{\partial \ln A(\mathbf{p})}{\partial \ln p_{\omega}} = \frac{z_{\omega} s'(z_{\omega})}{\int_{\Omega} s'(z_{\omega'}) z_{\omega'} d\omega'} = \frac{[\zeta(z_{\omega}) - 1] s(z_{\omega})}{\int_{\Omega} [\zeta(z_{\omega'}) - 1] s(z_{\omega'}) d\omega'} \neq \frac{\partial \ln P(\mathbf{p})}{\partial \ln p_{\omega}} = s(z_{\omega}),$$

unless  $\zeta(z)$  is independent of z or  $s(z) = \gamma z^{1-\sigma}$  with  $\zeta(z) = \sigma > 1$ .

For symmetric price patterns,  $\mathbf{p} = p\mathbf{1}_{\Omega}^{-1}$ ,

$$1 = s\left(\frac{p_{\omega}}{A(\mathbf{p})}\right)V = s\left(\frac{p}{A(p\mathbf{1}_{\Omega}^{-1})}\right)V = s\left(\frac{1}{A(\mathbf{1}_{\Omega}^{-1})}\right)V \Rightarrow z_{\omega} = \frac{p_{\omega}}{A(\mathbf{p})} = \frac{1}{A(\mathbf{1}_{\Omega}^{-1})} = s^{-1}\left(\frac{1}{V}\right).$$

Hence,

|                         | Definition                                                                                                                                         | Under H.S.A.                                                                    |
|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| <b>Price Elasticity</b> | $\zeta_{\omega} \equiv -\frac{\partial \ln x_{\omega}}{\partial \ln p_{\omega}} = \zeta(p_{\omega}; \mathbf{p}) = \zeta^*(x_{\omega}; \mathbf{x})$ | $\zeta_{\omega} \equiv \zeta\left(\frac{p_{\omega}}{A(\mathbf{p})}\right) > 1,$ |
| Substitutability        | $\sigma(V) \equiv \zeta(1; 1_{\Omega}^{-1}) = \zeta^*(1; 1_{\Omega})$                                                                              | $\sigma(V) = \zeta(s^{-1}(1/V)) > 1$                                            |
| Love-for-variety        | $\mathcal{L}(V) \equiv \frac{d \ln z(V)}{d \ln V} = -\frac{d \ln y(V)}{d \ln V} - 1 > 0.$                                                          | $\mathcal{L}(V) = \Phi(s^{-1}(1/V)) > 0.$                                       |

#### *Notes:*

• At symmetric price patterns,

$$\ln\left[\frac{A(\mathbf{p})}{cP(\mathbf{p})}\right] = \ln\left[\frac{A(\mathbf{1}_{\Omega}^{-1})}{cP(\mathbf{1}_{\Omega}^{-1})}\right] = \Phi\left(s^{-1}\left(\frac{1}{V}\right)\right) = \mathcal{L}(V).$$

• Since  $s^{-1}(1/V)$  is increasing in V,

$$\sigma(V) = \zeta \left( s^{-1} \left( \frac{1}{V} \right) \right)$$

implies that Marshall's  $2^{nd}$  law,  $\zeta'(\cdot) > 0$ , is equivalent to increasing substitutability,  $\sigma'(\cdot) > 0$ , under H.S.A.

$$\sigma(V) = \zeta \left( s^{-1} \left( \frac{1}{V} \right) \right); \ \mathcal{L}(V) = \Phi \left( s^{-1} \left( \frac{1}{V} \right) \right), \quad \text{where} \quad \zeta(z) \equiv 1 - \frac{zs'(z)}{s(z)}; \ \Phi(z) \equiv \frac{1}{s(z)} \int_{z}^{z} \frac{s(\xi)}{\xi} d\xi.$$

#### Lemma 1:

$$\zeta'(z) \geq 0, \forall z \in (z_0, \overline{z}) \implies \Phi'(z) \leq 0, \forall z \in (z_0, \overline{z}).$$

Furthermore,

$$\zeta'(z) = 0 \iff \Phi'(z) = 0 \iff CES.$$

From this,

#### **Proposition 1**

$$\zeta'(z) \geq 0, \forall z \in (z_0, \overline{z}) \Leftrightarrow \sigma'(V) \geq 0, \forall V \in (1/s(z_0), \infty)$$

 $\Longrightarrow$ 

$$\Phi'(z) \leq 0, \forall z \in (z_0, \overline{z}) \Leftrightarrow \mathcal{L}'(V) \leq 0, \forall V \in (1/s(z_0), \infty).$$

Furthermore,

$$\zeta'(z) = 0 \Leftrightarrow \sigma'(V) = 0 \Leftrightarrow \Phi'(z) = 0 \Leftrightarrow \mathcal{L}'(V) = 0 \Leftrightarrow CES.$$

#### Thus, under H.S.A.,

- Marshall's  $2^{\text{nd}}$  Law,  $\zeta'(\cdot) > 0$  for all  $z < \overline{z}$ , is equivalent to increasing substitutability,  $\sigma'(\cdot) > 0$  for all V.
- Increasing (decreasing) substitutability implies diminishing (increasing) love-for-variety. The converse is not true.
- Constant love-for-variety, constant substitutability, and constant price elasticity are all equivalent and occur iff CES.

**Homothetic Direct Implicit Additivity (HDIA)** 

## Symmetric HDIA (Homothetic Directly Implicitly Additive) DS with Gross Substitutes

**Definition:** A symmetric CRS technology,  $X = X(\mathbf{x}) \equiv Z\hat{X}(\mathbf{x})$  is called *homothetic with direct implicit additivity* (HDIA) with gross substitutes if it can be defined implicitly by:

$$\int_{\Omega} \phi\left(\frac{Zx_{\omega}}{X(\mathbf{x})}\right) d\omega = \int_{\Omega} \phi\left(\frac{x_{\omega}}{\hat{X}(\mathbf{x})}\right) d\omega \equiv 1,$$

where  $\phi(\cdot)$ :  $\mathbb{R}_+ \to \mathbb{R}_+$  is independent of Z > 0,  $C^3$ , with  $\phi(0) = 0$ ;  $\phi(\infty) = \infty$ ;  $\phi'(y) > 0 > \phi''(y)$ ,  $-y\phi''(y)/\phi'(y) < 1$ ,  $\forall y \in (0,\infty)$ .

- By construction,  $\hat{X}(\mathbf{x})$  is independent of Z > 0, TFP.
- If  $\phi'(0) < \infty$ , the choke price is  $B(\mathbf{p})\phi'(0)$ . If  $\phi'(0) = \infty$ , no choke price.
- CES with gross substitutes:  $\phi(y) = (y)^{1-1/\sigma}$ ,  $(\sigma > 1)$ .
- CoPaTh:  $\phi(y) = \int_0^y \left(1 + \frac{1}{\sigma 1}(\xi)^{\frac{1 \rho}{\rho}}\right)^{\frac{\rho}{\rho 1}} d\xi$ ,  $0 < \rho < 1$ , converging to CES with  $\rho \nearrow 1$ .
- An extension of the Kimball (1995) aggregator in the sense that  $\Omega$  is not fixed and  $V \equiv |\Omega|$  is a variable.

| <b>Inverse Demand Curve:</b> | $\frac{p_{\omega}}{B(\mathbf{p})} = \phi'\left(\frac{x_{\omega}}{\widehat{X}(\mathbf{x})}\right) = \phi'\left(\frac{Zx_{\omega}}{X(\mathbf{x})}\right)$ | Demand Curve:                                                                                                  | $\overline{\frac{Zx_{\omega}}{X(\mathbf{x})}} = \frac{x_{\omega}}{\widehat{X}(\mathbf{x})} = (\phi')^{-1} \left(\frac{p_{\omega}}{B(\mathbf{p})}\right)$ |
|------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Unit Cost Function:</b>   | $P(\mathbf{p}) = \frac{1}{Z}\hat{P}(\mathbf{p}) =$                                                                                                      | $\equiv \frac{1}{Z} \int_{\Omega} p_{\omega}(\phi')^{-1} \left( \frac{p_{\omega}}{B(\mathbf{p})} \right)^{-1}$ |                                                                                                                                                          |

where  $B(\mathbf{p})$  and  $\hat{P}(\mathbf{p})$  are both independent of Z > 0 and

$$\int_{\Omega} \phi \left( (\phi')^{-1} \left( \frac{p_{\omega}}{B(\mathbf{p})} \right) \right) d\omega \equiv 1.$$

Budget Share:  $s_{\omega} \equiv \frac{p_{\omega} x_{\omega}}{P(\mathbf{p}) X(\mathbf{x})} = \frac{p_{\omega}}{\widehat{P}(\mathbf{p})} (\phi')^{-1} \left( \frac{p_{\omega}}{B(\mathbf{p})} \right) = \frac{x_{\omega}}{C^*(\mathbf{x})} \phi' \left( \frac{x_{\omega}}{\widehat{X}(\mathbf{x})} \right),$ 

where

$$C^*(\mathbf{x}) \equiv \int_{\Omega} x_{\omega} \phi' \left( \frac{x_{\omega}}{\hat{X}(\mathbf{x})} \right) d\omega$$

satisfying the identity

$$\frac{\widehat{P}(\mathbf{p})}{B(\mathbf{p})} = \int_{\Omega} \frac{p_{\omega}}{B(\mathbf{p})} (\phi')^{-1} \left( \frac{p_{\omega}}{B(\mathbf{p})} \right) d\omega = \int_{\Omega} \phi' \left( \frac{x_{\omega}}{\widehat{X}(\mathbf{x})} \right) \frac{x_{\omega}}{\widehat{X}(\mathbf{x})} d\omega = \frac{C^*(\mathbf{x})}{\widehat{X}(\mathbf{x})}.$$

**Budget share under HDIA**: A function of the two relative prices,  $p_{\omega}/\hat{P}(\mathbf{p}) \& p_{\omega}/B(\mathbf{p})$ , or of the two relative quantities,  $x_{\omega}/\hat{X}(\mathbf{x}) \& x_{\omega}/C^*(\mathbf{x})$ , unless  $\hat{P}(\mathbf{p})/B(\mathbf{p}) = C^*(\mathbf{x})/\hat{X}(\mathbf{x})$  is a constant, which occurs iff CES.

| <b>Price Elasticity:</b> | $\zeta_{\omega} = \zeta^*(x_{\omega}; \mathbf{x}) = -\frac{\phi'(y_{\omega})}{\psi(y_{\omega})} \equiv \zeta^D(y_{\omega}) = \zeta^D\left((\phi')^{-1}\left(\frac{p_{\omega}}{p_{\omega}}\right)\right) = \zeta(p_{\omega}; \mathbf{p}) > 1$ |
|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                          | $\zeta_{\omega} = \zeta^{*}(x_{\omega}; \mathbf{x}) = -\frac{1}{y_{\omega}\phi''(y_{\omega})} \equiv \zeta^{D}(y_{\omega}) = \zeta^{D}(\phi')^{-1}(\frac{1}{B(\mathbf{p})}) = \zeta(p_{\omega}; \mathbf{p}) > 1$                             |

#### Notes:

- Price Elasticity, unlike the budget share, is a function of a single variable,  $\psi_{\omega} \equiv x_{\omega}/\hat{X}(\mathbf{x})$  or  $\phi'(\psi_{\omega}) = p_{\omega}/B(\mathbf{p})$ .
- $\zeta^D(y_\omega) = \sigma > 1$  under CES,  $\phi(y) = (y)^{1-1/\sigma}$
- Marshall's  $2^{\text{nd}}$  law iff  $\zeta^{D'}(\cdot) < 0$ , satisfied by  $\zeta^{D}(y) = 1 + (\sigma 1)(y)^{\frac{\rho 1}{\rho}}$  under CoPaTh.

For symmetric quantity patterns,  $\mathbf{x} = x \mathbf{1}_{\Omega}$ ,

$$\phi\left(\frac{1}{\widehat{X}(\mathbf{1}_{\Omega})}\right)V = 1 \implies \frac{1}{\widehat{X}(\mathbf{1}_{\Omega})} = \phi^{-1}\left(\frac{1}{V}\right).$$

Hence,

|                         | Definition                                                                                                                                         | Under HDIA                                                                                                                                                                          |
|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Price Elasticity</b> | $\zeta_{\omega} \equiv -\frac{\partial \ln x_{\omega}}{\partial \ln p_{\omega}} = \zeta(p_{\omega}; \mathbf{p}) = \zeta^*(x_{\omega}; \mathbf{x})$ | $\zeta_{\omega} = \zeta^{D} \left( \frac{x_{\omega}}{\widehat{X}(\mathbf{x})} \right) = \zeta^{D} \left( (\phi')^{-1} \left( \frac{p_{\omega}}{B(\mathbf{p})} \right) \right) > 1,$ |
| Substitutability        | $\sigma(V) \equiv \zeta(1; 1_{\Omega}^{-1}) = \zeta^*(1; 1_{\Omega})$                                                                              | $\sigma(V) = \zeta^{D}(\phi^{-1}(1/V)) > 1$                                                                                                                                         |
| Love-for-variety        | $\mathcal{L}(V) \equiv \frac{d \ln z(V)}{d \ln V} = -\frac{d \ln y(V)}{d \ln V} - 1 > 0.$                                                          | $\mathcal{L}(V) = \frac{1}{\mathcal{E}_{\phi}(\phi^{-1}(1/V))} - 1 > 0.$                                                                                                            |

where

$$0 < \mathcal{E}_{\phi}(y) \equiv \frac{y\phi'(y)}{\phi(y)} < 1.$$

#### *Notes:*

• At symmetric quantity patterns,  $\mathbf{x} = x \mathbf{1}_{\Omega}$ ,

$$\frac{\widehat{P}\left(\mathbf{1}_{\Omega}^{-1}\right)}{B(\mathbf{1}_{\Omega}^{-1})} = \frac{C^{*}(\mathbf{1}_{\Omega})}{\widehat{X}(\mathbf{1}_{\Omega})} = \int_{\Omega} \mathcal{E}_{\phi}\left(\frac{1}{\widehat{X}(\mathbf{1}_{\Omega})}\right) \phi\left(\frac{1}{\widehat{X}(\mathbf{1}_{\Omega})}\right) d\omega = \mathcal{E}_{\phi}\left(\phi^{-1}\left(\frac{1}{V}\right)\right) \Longrightarrow \frac{B\left(\mathbf{1}_{\Omega}^{-1}\right)}{\widehat{X}(\mathbf{1}_{\Omega}^{-1})} = \frac{\widehat{X}(\mathbf{1}_{\Omega})}{C^{*}(\mathbf{1}_{\Omega})} = \mathcal{L}(V) + 1.$$

• Since  $\phi^{-1}(1/V)$  is decreasing in V,

$$\sigma(V) = \zeta^{D}(\phi^{-1}(1/V))$$

implies that Marshall's  $2^{nd}$  law,  $\zeta^{D'}(\cdot) < 0$ , is equivalent to increasing substitutability,  $\sigma'(\cdot) > 0$ , under HDIA.

$$\sigma(V) = \zeta^{D}(\phi^{-1}(1/V)); \ \mathcal{L}(V) = \frac{1}{\mathcal{E}_{\phi}(\phi^{-1}(1/V))} - 1, \qquad \text{where} \qquad \zeta^{D}(y) \equiv -\frac{\phi'(y)}{y\phi''(y)}; \ \mathcal{E}_{\phi}(y) \equiv \frac{y\phi'(y)}{\phi(y)}$$

Hence,

#### Lemma 2:

$$\zeta^{D'}(y) \leq 0, \forall y \in (0, y_0) \implies \mathcal{E}'_{\phi}(y) \leq 0, \forall y \in (0, y_0).$$

Furthermore,

$$\zeta^{D'}(y) = 0 \iff \mathcal{E}'_{\phi}(y) = 0 \iff \text{CES}.$$

From this,

#### **Proposition 2:**

$$\zeta^{D'}(y) \leq 0 \ \forall y \in (0, y_0) \Leftrightarrow \sigma'(V) \geq 0, \forall V \in (1/\phi(y_0), \infty)$$

$$\mathcal{E}_{\phi}'(y) \lessgtr 0, \forall y \in (0, y_0) \Leftrightarrow \mathcal{L}'(V) \lessgtr 0, \forall V \in (1/\phi(y_0), \infty).$$

Furthermore,

$$\zeta^{D'}(y) = 0 \iff \sigma'(V) = 0 \iff \mathcal{E}'_{\phi}(y) = 0 \iff \mathcal{L}'(V) = 0 \iff \text{CES}.$$

Thus, under HDIA,

- Marshall's  $2^{\text{nd}}$  Law,  $\zeta^{D'}(\cdot) < 0$  for all  $\psi > 0$ , is equivalent to increasing substitutability,  $\sigma'(\cdot) > 0$  for all V.
- Increasing (decreasing) substitutability implies diminishing (increasing) love-for-variety. The converse is not true.
- Constant love-for-variety, constant substitutability, and constant price elasticity are all equivalent and occur iff CES.

**Homothetic Indirect Implicit Additivity (HIIA)** 

## Symmetric HIIA (Homothetic Indirectly Implicitly Additive) DS with Gross Substitutes

**Definition:** A symmetric CRS technology,  $P = P(\mathbf{p}) = \hat{P}(\mathbf{p})/Z$ , is called homothetic with indirect implicit additivity (HIIA) if it can be defined implicitly by:

$$\int_{\Omega} \theta \left( \frac{p_{\omega}}{ZP(\mathbf{p})} \right) d\omega = \int_{\Omega} \theta \left( \frac{p_{\omega}}{\widehat{P}(\mathbf{p})} \right) d\omega = 1,$$

where  $\theta$ :  $\mathbb{R}_{++} \to \mathbb{R}_{+}$  is independent of Z > 0,  $C^3$ , with  $\theta(z) > 0$ ,  $\theta'(z) < 0$ ,  $\theta''(z) > 0$ ,  $-z\theta''(z)/\theta'(z) > 1$ , for  $\theta(z) > 0$  with  $\lim_{z\to 0} \theta(z) = \infty$  and  $\lim_{z\to \bar{z}} \theta(z) = 0$ , where  $\bar{z} \equiv \inf\{z > 0 | \theta(z) = 0\}$ .

- By construction,  $\hat{P}(\mathbf{p})$  is independent of Z > 0, TFP.
- If  $\bar{z} < \infty$ ,  $\hat{P}(\mathbf{p})\bar{z} = ZP(\mathbf{p})\bar{z}$  is the choke price. If  $\bar{z} = \infty$ , no choke price.
- CES with gross substitutes:  $\theta(z) = (z)^{1-\sigma}$ ,  $(\sigma > 1)$ .
- CoPaTh:  $\theta(z) = \sigma^{\frac{\rho}{1-\rho}} \int_{z/\bar{z}}^{1} \left( (\xi)^{\frac{\rho-1}{\rho}} 1 \right)^{\frac{\rho}{1-\rho}} d\xi$  for  $z < \bar{z} = \left( \frac{\sigma}{\sigma-1} \right)^{\frac{\rho}{1-\rho}}$ ;  $0 < \rho < 1$ , converging to CES as  $\rho \nearrow 1$ .

| Inverse Demand Curve: | $\frac{p_{\omega}}{ZP(\mathbf{p})}$ = | $=\frac{p_{\omega}}{\widehat{P}(\mathbf{p})}=(-\theta')^{-}$ | $1\left(\frac{x_{\omega}}{B^*(\mathbf{x})}\right)$ | Demand<br>Curve:              | $\frac{x_{\omega}}{B^*(\mathbf{x})} =$                           | $-\theta'\left(\frac{p_{\omega}}{\widehat{P}(\mathbf{p})}\right) = -\theta'\left(\frac{p_{\omega}}{ZP(\mathbf{p})}\right) > 0$ |
|-----------------------|---------------------------------------|--------------------------------------------------------------|----------------------------------------------------|-------------------------------|------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| Production Function:  |                                       | X(                                                           | $\mathbf{x}) = Z\hat{X}(\mathbf{x})$               | $) \equiv Z \int_{\Omega} (-$ | $\theta'$ ) <sup>-1</sup> $\left(\frac{x_{\alpha}}{B^*(}\right)$ | $-$ 1 $\gamma$ $\Omega(a)$                                                                                                     |

where  $\hat{X}(\mathbf{x})$  and  $B^*(\mathbf{x})$  are both independent of Z > 0 and

$$\int_{\Omega} \theta \left( (-\theta')^{-1} \left( \frac{x_{\omega}}{B^*(\mathbf{x})} \right) \right) d\omega \equiv 1.$$

Budget Share:  $\frac{p_{\omega}x_{\omega}}{P(\mathbf{p})X(\mathbf{x})} = (-\theta')^{-1} \left(\frac{x_{\omega}}{B^*(\mathbf{x})}\right) \frac{x_{\omega}}{\widehat{X}(\mathbf{x})} = -\theta' \left(\frac{p_{\omega}}{\widehat{P}(\mathbf{p})}\right) \frac{p_{\omega}}{C(\mathbf{p})}$ 

where

$$C(\mathbf{p}) \equiv -\int_{\Omega} \theta' \left( \frac{p_{\omega}}{\widehat{P}(\mathbf{p})} \right) p_{\omega} d\omega > 0$$

satisfying the identity,

$$\frac{C(\mathbf{p})}{\widehat{P}(\mathbf{p})} = \int_{\Omega} \frac{p_{\omega}}{\widehat{P}(\mathbf{p})} \left[ -\theta' \left( \frac{p_{\omega}}{\widehat{P}(\mathbf{p})} \right) \right] d\omega = \int_{\Omega} (-\theta')^{-1} \left( \frac{x_{\omega}}{B^*(\mathbf{x})} \right) \frac{x_{\omega}}{B^*(\mathbf{x})} d\omega = \frac{\widehat{X}(\mathbf{x})}{B^*(\mathbf{x})}.$$

Budget share under HIIA: A function of two relative prices,  $p_{\omega}/\hat{P}(\mathbf{p})$  and  $p_{\omega}/\mathcal{C}(\mathbf{p})$ , or of two relative quantities,  $x_{\omega}/\hat{X}(\mathbf{x})$  and  $x_{\omega}/B^*(\mathbf{x})$ , unless  $\mathcal{C}(\mathbf{p})/\hat{P}(\mathbf{p}) = \hat{X}(\mathbf{x})/B^*(\mathbf{x})$  is a constant, which occurs iff CES.

Price Elasticity:  $\zeta_{\omega} = \zeta(p_{\omega}; \mathbf{p}) = -\frac{z_{\omega}\theta''(z_{\omega})}{\theta'(z_{\omega})} \equiv \zeta^{I}(z_{\omega}) = \zeta^{I}\left((-\theta')^{-1}\left(\frac{x_{\omega}}{B^{*}(\mathbf{x})}\right)\right) = \zeta^{*}(x_{\omega}; \mathbf{x}) > 1$ 

#### *Notes:*

- Price Elasticity, unlike the budget share, is a function of a single variable,  $z_{\omega} \equiv p_{\omega}/\hat{P}(\mathbf{p})$  or  $x_{\omega}/B^*(\mathbf{x}) = -\theta'(z_{\omega})$ .
- $\zeta^I(z_\omega) = \sigma > 1$  under CES,  $\theta(z) = (z)^{1-\sigma}$ ,  $(\sigma > 1)$ .
- Marshall's 2<sup>nd</sup> law iff  $\zeta^{I'}(z_{\omega}) > 0$ , satisfied by  $\zeta^{I}(z_{\omega}) = \frac{\sigma}{\sigma (\sigma 1)(z_{\omega})^{(1-\rho)/\rho}} = \frac{1}{1 (z_{\omega}/\bar{z})^{(1-\rho)/\rho}}$  under CoPaTh.

For symmetric price patterns,  $\mathbf{p} = p\mathbf{1}_{\Omega}^{-1}$ ,

$$\theta\left(\frac{1}{\widehat{P}(\mathbf{1}_{\Omega}^{-1})}\right)V = 1 \implies \frac{1}{\widehat{P}(\mathbf{1}_{\Omega}^{-1})} = \theta^{-1}(1/V).$$

Hence,

|                         | Definition                                                                                                                                         | Under HIIA                                                                                                                                                                                     |
|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Price Elasticity</b> | $\zeta_{\omega} \equiv -\frac{\partial \ln x_{\omega}}{\partial \ln p_{\omega}} = \zeta(p_{\omega}; \mathbf{p}) = \zeta^*(x_{\omega}; \mathbf{x})$ | $\zeta_{\omega} \equiv \zeta^{I} \left( \frac{p_{\omega}}{\widehat{P}(\mathbf{p})} \right) = \zeta^{I} \left( (-\theta')^{-1} \left( \frac{x_{\omega}}{B^{*}(\mathbf{x})} \right) \right) > 1$ |
| Substitutability        | $\sigma(V) \equiv \zeta(1; 1_{\Omega}^{-1}) = \zeta^*(1; 1_{\Omega})$                                                                              | $\sigma(V) = \zeta^{I}(\theta^{-1}(1/V)) > 1$                                                                                                                                                  |
| Love-for-variety        | $\mathcal{L}(V) \equiv \frac{d \ln z(V)}{d \ln V} = -\frac{d \ln y(V)}{d \ln V} - 1 > 0.$                                                          | $\mathcal{L}(V) = \frac{1}{\mathcal{E}_{\theta}(\theta^{-1}(1/V))} > 0.$                                                                                                                       |

where

$$\mathcal{E}_{\theta}(z) \equiv -\frac{z\theta'(z)}{\theta(z)} > 0.$$

#### *Notes:*

• At symmetric price patterns,  $\mathbf{p} = p\mathbf{1}_{\Omega}^{-1}$ ,

$$\frac{\mathcal{C}\left(\mathbf{1}_{\Omega}^{-1}\right)}{\widehat{P}(\mathbf{1}_{\Omega}^{-1})} = \frac{\widehat{X}(\mathbf{1}_{\Omega})}{B^{*}(\mathbf{1}_{\Omega})} = \int_{\Omega} \mathcal{E}_{\theta}\left(\frac{1}{\widehat{P}(\mathbf{1}_{\Omega}^{-1})}\right) \theta\left(\frac{1}{\widehat{P}(\mathbf{1}_{\Omega}^{-1})}\right) d\omega = \mathcal{E}_{\theta}\left(\theta^{-1}\left(\frac{1}{V}\right)\right) \Longrightarrow \mathcal{L}(V) = \frac{\widehat{P}\left(\mathbf{1}_{\Omega}^{-1}\right)}{\mathcal{C}(\mathbf{1}_{\Omega}^{-1})} = \frac{B^{*}(\mathbf{1}_{\Omega})}{\widehat{X}(\mathbf{1}_{\Omega})}$$

• Since  $\theta^{-1}(1/V)$  is increasing in V,

$$\sigma(V) = \zeta^{I}(\theta^{-1}(1/V))$$

implies that Marshall's  $2^{nd}$  law,  $\zeta^{I'}(\cdot) > 0$ , is equivalent to increasing substitutability,  $\sigma'(\cdot) > 0$ , under HIIA.

$$\sigma(V) = \zeta^{I}(\theta^{-1}(1/V)); \ \mathcal{L}(V) = \frac{1}{\mathcal{E}_{\theta}(\theta^{-1}(1/V))}, \qquad \text{where} \qquad \zeta^{I}(z) \equiv -\frac{z\theta''(z)}{\theta'(z)}; \ \mathcal{E}_{\theta}(z) \equiv -\frac{z\theta'(z)}{\theta(z)}.$$

Hence,

$$\zeta^{I'}(z) \gtrless 0, \forall z \in (z_0, \overline{z}) \quad \Longrightarrow \quad \mathcal{E}_{\theta}'(z) \gtrless 0, \forall z \in (z_0, \overline{z}).$$

Furthermore.

$$\zeta^{I'}(z) = 0 \iff \mathcal{E}'_{\theta}(z) = 0 \Leftrightarrow \text{CES}.$$

From this,

#### **Proposition 3:**

$$\zeta^{I'}(z) \gtrless 0, \forall z \in (z_0, \overline{z}) \iff \sigma'(V) \gtrless 0, \forall V \in (1/\theta(z_0), \infty)$$

$$\Longrightarrow \mathcal{E}_{\theta}'(z) \gtrless 0, \forall z \in (z_0, \overline{z}) \Longleftrightarrow \mathcal{L}'(V) \leqq 0, \forall V \in (1/\theta(z_0), \infty).$$

Furthermore,

$$\zeta^{I'}(z) = 0 \iff \sigma'(V) = 0 \iff \mathcal{E}'_{\theta}(z) = 0 \iff \mathcal{L}'(V) = 0 \iff \text{CES}.$$

#### Under HIIA,

- Marshall's  $2^{\text{nd}}$  Law,  $\zeta^{I'}(\cdot) < 0$  for all  $z < \overline{z}$ , is equivalent to increasing substitutability,  $\sigma'(\cdot) > 0$  for all V.
- Increasing (decreasing) substitutability implies diminishing (increasing) love-for-variety. The converse is not true.
- Constant love-for-variety, constant substitutability, and constant price elasticity are all equivalent and occur iff CES.

**Appendices** 

## Appendix C: An Alternative (and Equivalent) Definition of H.S.A.

**Definition:** A symmetric CRS technology,  $X = X(\mathbf{x})$  is called *homothetic single aggregator* (H.S.A.) if the budget share of  $\omega$  depends solely on a single variable,  $y_{\omega} \equiv x_{\omega}/A^*$ , its own quantity  $x_{\omega}$ , normalized by the common quantity aggregator,  $A^* = A^*(\mathbf{x})$ .

$$s_{\omega} \equiv \frac{p_{\omega} x_{\omega}}{\mathbf{p} \mathbf{x}} = \frac{\partial \ln X(\mathbf{x})}{\partial \ln x_{\omega}} = s^* \left(\frac{x_{\omega}}{A^*(\mathbf{x})}\right), \quad \text{where} \quad \int_{\Omega} s^* \left(\frac{x_{\omega}}{A^*(\mathbf{x})}\right) d\omega \equiv 1.$$

- $s^*: \mathbb{R}_{++} \to \mathbb{R}_+$ : the budget share function, in  $y_\omega \equiv x_\omega/A^*$  with  $0 < \mathcal{E}_{s^*}(y) \equiv \frac{d \ln s^*(y)}{d \ln y} < 1$ ,  $s^*(0) = 0$ ,  $s^*(\infty) = \infty$ .
- $A^* = A^*(\mathbf{x})$ : the common quantity aggregator, defined by the adding-up constraint,  $\int_{\Omega} s^*(x_{\omega}/A^*)d\omega \equiv 1$ . By construction, the budget shares add up to one.  $A^*(\mathbf{x})$  linear homogenous in  $\mathbf{x}$  for a fixed  $\Omega$ . A larger  $\Omega$  increases  $A^*$ .

| <b>Price Elasticity:</b> | $\zeta_{\omega} = \zeta^*(x_{\omega}; \mathbf{x}) = \left[1 - \frac{d \ln s^*(y_{\omega})}{d \ln y}\right]^{-1} \equiv \zeta^*(y_{\omega}) > 1,$ |
|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
|                          | $d \ln y_{\omega} = \int_{-\infty}^{\infty} (y_{\omega})^{2} d \ln y_{\omega}$                                                                   |

#### *Notes:*

- Also a function of a single variable,  $y_{\omega} \equiv x_{\omega}/A^*(\mathbf{x})$ .
- $\zeta^*(y) = \sigma > 1$  under CES,  $s^*(y) = \gamma^{1/\sigma}(y)^{1-1/\sigma}$ .
- Marshall's  $2^{\text{nd}}$  law,  $\partial \zeta(x_{\omega}; \mathbf{x})/\partial x_{\omega} < 0$ , holds iff  $\zeta^{*'}(\cdot) < 0$ .
- The choke price exists iff  $\lim_{y\to 0} {s^*}'(y) < \infty$ , which implies  $\lim_{y\to 0} \frac{d\ln s^*(y)}{d\ln y} = 1$  and hence  $\lim_{y\to 0} \zeta^*(y) = \infty$ . For example, translog corresponds to  $s^*(y)$ , defined implicitly by  $s^* \exp(s^*/\gamma) \equiv \bar{z}y$ , for  $\bar{z} < \infty$ .

**Production Function:** By integrating  $=\frac{\partial \ln X(\mathbf{x})}{\partial \ln x_{\omega}} = s^* \left(\frac{x_{\omega}}{A^*(\mathbf{x})}\right)$ ,

$$\frac{X(\mathbf{x})}{A^*(\mathbf{x})} = c^* \exp \left[ \int_{\Omega} s^* \left( \frac{x_{\omega}}{A^*(\mathbf{x})} \right) \Phi^* \left( \frac{x_{\omega}}{A^*(\mathbf{x})} \right) d\omega \right],$$

where

$$\Phi^*(y) \equiv \frac{1}{s^*(y)} \int_0^y \frac{s^*(\xi^*)}{\xi^*} d\xi^* = \frac{\int_0^y [s^*(\xi^*)/\xi^*] d\xi^*}{\int_0^y [s^*(y)/y] d\xi^*} > 1,$$

and  $c^* > 0$  is a constant, proportional to TFP.  $\Phi^*(y) > 1$  follows from  $\mathcal{E}_{s^*}(y) \equiv \frac{d \ln s^*(y)}{d \ln y} < 1$  implying that  $s^*(y)/y$  is decreasing in y.

#### *Notes:*

- $X(\mathbf{x})$ , linear homogeneous, monotonic, and strictly quasi-concave, ensuring the integrability of H.S.A.
- $X(\mathbf{x})/A^*(\mathbf{x})$  is not constant and depends on  $\mathbf{x}$ , with the sole exception of CES, because

$$\frac{\partial \ln A^*(\mathbf{x})}{\partial \ln x_{\omega}} = \frac{y_{\omega} s^{*'}(y_{\omega})}{\int_{\Omega} s^{*'}(y_{\omega'}) y_{\omega'} d\omega'} = \frac{\left[1 - \frac{1}{\zeta^*(y_{\omega})}\right] s^*(y_{\omega})}{\int_{\Omega} \left[1 - \frac{1}{\zeta^*(y_{\omega'})}\right] s^*(y_{\omega'}) d\omega'} \neq \frac{\partial \ln X(\mathbf{x})}{\partial \ln x_{\omega}} = s^*(y_{\omega}),$$

unless  $\zeta^*(y)$  is independent of y or  $s^*(y) = \gamma^{1/\sigma}(y)^{1-1/\sigma}$  with  $\zeta^*(y) = \sigma > 1$ .

For symmetric quantity patterns,  $\mathbf{x} = x \mathbf{1}_{\Omega}$ ,

$$1 = s^* \left( \frac{x}{A^*(x \mathbf{1}_{\Omega})} \right) V = s^* \left( \frac{1}{A^*(\mathbf{1}_{\Omega})} \right) V \Longrightarrow y_{\omega} \equiv \frac{1}{A^*(\mathbf{1}_{\Omega})} = s^{*-1} \left( \frac{1}{V} \right).$$

Hence,

|                         | Definition                                                                                                                                         | Under H.S.A.                                                                          |
|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
| <b>Price Elasticity</b> | $\zeta_{\omega} \equiv -\frac{\partial \ln x_{\omega}}{\partial \ln p_{\omega}} = \zeta(p_{\omega}; \mathbf{p}) = \zeta^*(x_{\omega}; \mathbf{x})$ | $\zeta_{\omega} \equiv \zeta^* \left( \frac{x_{\omega}}{A^*(\mathbf{x})} \right) > 1$ |
|                         | $\partial \ln p_{\omega} = \partial \ln p_{\omega}$                                                                                                | $A^*(\mathbf{x})$                                                                     |
| Substitutability        | $\sigma(V) \equiv \zeta(1; 1_{\Omega}^{-1}) = \zeta^*(1; 1_{\Omega})$                                                                              | $\sigma(V) = \zeta^* \big( s^{*-1} (1/V) \big) > 1$                                   |
| Love-for-variety        | $\mathcal{L}(V) \equiv \frac{d \ln z(V)}{d \ln z(V)} = -\frac{d \ln y(V)}{d \ln z(V)} - 1 > 0.$                                                    | $\mathcal{L}(V) = \Phi^*(s^{*-1}(1/V)) - 1 > 0.$                                      |
|                         | $L(V) \equiv \frac{1}{d \ln V} = -\frac{1}{d \ln V} - 1 > 0.$                                                                                      |                                                                                       |

#### *Notes:*

• At the symmetric quantity patterns,

$$\ln\left[\frac{X(\mathbf{x})}{c^*A^*(\mathbf{x})}\right] = \Phi^*\left(s^{*-1}\left(\frac{1}{V}\right)\right) = \mathcal{L}(V) + 1.$$

• Since  $s^{*-1}(1/V)$  is decreasing in V,

$$\sigma(V) = \zeta^* \left( s^{*-1} \left( \frac{1}{V} \right) \right)$$

implies that Marshall's  $2^{nd}$  law,  $\zeta^{*'}(\cdot) < 0$ , is equivalent to increasing substitutability,  $\sigma'(\cdot) > 0$ .

$$\sigma(V) = \zeta^* \left( s^{*-1} \left( \frac{1}{V} \right) \right); \ \mathcal{L}(V) = \Phi^* \left( s^{*-1} \left( \frac{1}{V} \right) \right) - 1, \qquad \text{where} \quad \zeta^*(y) \equiv \left[ 1 - \frac{d \ln s^*(y)}{d \ln y} \right]^{-1}; \ \Phi^*(y) \equiv \frac{1}{s^*(y)} \int_0^y \frac{s^*(\xi^*)}{\xi^*} d\xi^*.$$

#### Lemma 1\*

$$\zeta^{*'}(y) \leq 0, \forall y \in (0, y_0) \Longrightarrow \Phi^{*'}(y) \geq 0, \forall y \in (0, y_0).$$

Furthermore,

$$\zeta^{*'}(y) = 0 \iff \Phi^{*'}(y) = 0 \iff CES.$$

#### From this,

## **Proposition 1\***

$$\zeta^{*'}(y) \leq 0, \forall y \in (0, y_0) \Leftrightarrow \sigma'(V) \geq 0, \forall V \in (1/s^*(y_0), \infty)$$

$$\Rightarrow \Phi^{*\prime}(y) \geq 0, \forall y \in (0, y_0) \Leftrightarrow \mathcal{L}'(V) \leq 0, \forall V \in (1/s^*(y_0), \infty)$$

Furthermore,

$$\zeta^{*\prime}(y) = 0 \iff \sigma'(V) = 0 \iff \Phi^{*\prime}(y) = 0 \iff \mathcal{L}'(V) = 0 \iff \text{CES}.$$

#### Thus, under H.S.A.,

- Marshall's  $2^{\text{nd}}$  Law,  $\zeta^{*'}(\cdot) < 0$  for all y > 0 is equivalent to increasing substitutability,  $\sigma'(\cdot) > 0$  for all V.
- Increasing (decreasing) substitutability implies diminishing (increasing) love-for-variety. The converse is not true.
- Constant love-for-variety, constant substitutability, and constant price elasticity are all equivalent and occur iff CES.

#### **Equivalence of the Two Definitions of H.S.A.**

Under the isomorphism given by the one-to-one mapping btw  $s(z) \leftrightarrow s^*(y)$ , defined by:

$$s^*(y) = s\left(\frac{s^*(y)}{y}\right); \qquad s(z) = s^*\left(\frac{s(z)}{z}\right).$$

From this,

$$\zeta^*(y) \equiv \left[1 - \frac{d \ln s^*(y)}{d \ln y}\right]^{-1} = \zeta(z) \equiv 1 - \frac{d \ln s(z)}{d \ln z} > 1,$$

$$0 < \mathcal{E}_{s^*}(y) \equiv \frac{d \ln s^*(y)}{d \ln y} < 1 \iff \mathcal{E}_s(z) \equiv \frac{d \ln s(z)}{d \ln z} < 0.$$

 $y_{\omega} \equiv x_{\omega}/A^*(\mathbf{x})$ , and  $z_{\omega} \equiv p_{\omega}/A(\mathbf{p})$ , are negatively related as

$$z_{\omega} = \frac{s^{*}(y_{\omega})}{y_{\omega}} \iff y_{\omega} = \frac{s(z_{\omega})}{z_{\omega}},$$

$$\frac{dy_{\omega}}{y_{\omega}} = -\zeta(z_{\omega}) \frac{dz_{\omega}}{z_{\omega}} \iff \frac{dz_{\omega}}{z_{\omega}} = -\frac{1}{\zeta^{*}(y_{\omega})} \frac{dy_{\omega}}{y_{\omega}}$$

and

$$\frac{z_{\omega}\zeta'(z_{\omega})}{y_{\omega}\zeta^{*'}(y_{\omega})} = -\zeta(z_{\omega}) = -\zeta^{*}(y_{\omega}) < 0.$$

If  $\lim_{y\to 0} s^{*'}(y) < \infty$ ,  $\lim_{y\to 0} \zeta^*(y) = \infty$  and the (normalized) choke price is:

$$\lim_{y \to 0} \frac{s^*(y)}{y} = \lim_{y \to 0} s^{*'}(y) = \bar{z} \equiv \inf\{z > 0 | s(z) = 0\} < \infty$$

Moreover,

$$\frac{p_{\omega}x_{\omega}}{A(\mathbf{p})A^{*}(\mathbf{x})} = y_{\omega}z_{\omega} = s(z_{\omega}) = s^{*}(y_{\omega}) = \frac{p_{\omega}x_{\omega}}{P(\mathbf{p})X(\mathbf{x})}$$

hence we have the identity,

$$c \exp \left[ \int_{\Omega} s(z_{\omega}) \Phi(z_{\omega}) d\omega \right] = \frac{A(\mathbf{p})}{P(\mathbf{p})} = \frac{X(\mathbf{x})}{A^{*}(\mathbf{x})} = c^{*} \exp \left[ \int_{\Omega} s^{*}(y_{\omega}) \Phi^{*}(y_{\omega}) d\omega \right]$$

which is a constant iff CES.

Furthermore, using

$$s(\xi) = s^*(\xi^*) = \xi \xi^* \to \frac{d\xi^*}{\xi^*} = \left[ \frac{\xi s'(\xi)}{s(\xi)} - 1 \right] \frac{d\xi}{\xi} \to s^*(\xi^*) \frac{d\xi^*}{\xi^*} = \left[ s'(\xi) - \frac{s(\xi)}{\xi} \right] d\xi$$
$$\xi = z \longleftrightarrow \xi^* = y; \ \xi = \overline{z} \longleftrightarrow \xi^* = 0,$$

$$\Phi^*(y) - \Phi(z) \equiv \frac{1}{s^*(y)} \int_0^y \frac{s^*(\xi^*)}{\xi^*} d\xi^* - \frac{1}{s(z)} \int_z^{\overline{z}} \frac{s(\xi)}{\xi} d\xi = \frac{1}{s(z)} \int_{\overline{z}}^z \left[ s'(\xi) - \frac{s(\xi)}{\xi} \right] d\xi - \frac{1}{s(z)} \int_z^{\overline{z}} \frac{s(\xi)}{\xi} d\xi = 1.$$

Since

$$w(\xi) \equiv \frac{s(\xi)/\xi}{\int_{z}^{\overline{z}} [s(\xi')/\xi'] \, d\xi'} \iff s(z)\Phi(z)w(\xi) = \frac{s(\xi)}{\xi}$$

$$w^{*}(\xi^{*}) \equiv \frac{s^{*}(\xi^{*})/\xi^{*}}{\int_{0}^{y} [s^{*}(\xi^{*'})/\xi^{*'}] \, d\xi^{*'}} \iff s^{*}(y)\Phi^{*}(y)w^{*}(\xi^{*}) = \frac{s^{*}(\xi^{*})}{\xi^{*}},$$

this implies

$$\frac{\xi w(\xi)}{\xi^* w^*(\xi^*)} = \frac{\Phi^*(y)}{\Phi(z)} = 1 + \frac{1}{\Phi(z)} = \frac{\Phi^*(y)}{\Phi^*(y) - 1'}$$

$$\frac{c}{c^*} = \exp\left[\int_{\Omega} \left[s^*(y_\omega)\Phi^*(y_\omega) - s(z_\omega)\Phi(z_\omega)\right]d\omega\right] = \exp\left[\int_{\Omega} s(z_\omega)d\omega\right] = e.$$

and

$$\mathcal{L}(V) = \Phi(s^{-1}(1/V)) = \Phi^*(s^{*-1}(1/V)) - 1.$$