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Some Backgrounds
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“Non-CES Aggregators: A Guided Tour”
(Annual Review of Economics. 2023)

Homothetic
e We all love using CES, because it is tractable.

e CES is tractable because it has many knife-edge
properties, which also make it restrictive.

e For some purposes, we need to drop some properties.

e Many look for an alternative, such as Stone-Geary,
translog, etc. But they have their own drawbacks.

e My Approach: Relax only those properties we need to
drop and keep the rest to retain the tractability of CES as
much as possible.

Non-
homothetic
CES

e Depending on which properties are kept, we come up with
many different classes of non-CES demand systems.

e Which class should be used depends on the applications.
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Love-for-Variety

Introduction
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Love-for-Variety (LV): Productivity (utility) gains from increasing variety of intermediate inputs (consumer goods).
e A natural consequence of the convexity of the production technologies (preferences).
e Willingness to pay for new inputs (goods); Dixit-Stiglitz (1977), Krugman (1980), Ethier (1982), Romer (1987), etc.

e A central concept in economic growth (Grossman-Helpman 1993; Gancia-Zillibotti 2005, Acemoglu 2008),
international trade (Helpman-Krugman 1995), and economic geography (Fujita-Krugman-Venables 1999).

e Though commonly discussed in monopolistic competition settings, LV 1s also a useful concept in other contexts,
such as gains from trade in Armington-type competitive models.

Little 1s known about how LV depends on the underlying demand system outside of CES with gross substitutes:
e The LV measure under CES: L = 1/(0 — 1) > 0, where o > 1 happens to represent 2 related but distinct concepts,
o the elasticity of substitution (ES) across varieties.
o the price elasticity (PE) of demand for each variety.
v One appealing feature: LV is smaller when ES is larger and when PE is larger.
v One unappealing feature: LV is independent of how many varieties are already available.

For this reason, some may prefer “Ildeal variety approach,” but it is less tractable than “Love-for-variety approach.”
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The Questions: What happens outside of CES?

e How is LV related to the underlying demand structure, such as ES or PE?
Note: ES and PE are distinct concepts, which could play different roles shaping LV outside of CES.

e Under what conditions does LV decline as more varieties become available?
e Can we develop “Love-for-variety approach” with diminishing LV, which is also tractable?
Our Approach to These Questions

e Define Substitutability, o (1), & Love-for-Variety, L(1/); both depend only on V (the mass of available varieties).
o Under CES, there are independent of V, as a(V) = a; L(V) =1/(c — 1).

e One’s intuition might say that Increasing Substitutability implies Diminishing love-for-variety.
a'(V)y>0=L'(V)<O.

e [t turns out that this is NOT true under general symmetric homothetic demand systems. Little can be said about
the relations btw PE, a(V) & L(V). “Almost anything goes.”

e To capture the above intuition, we need to impose more restrictions. Homotheticity (and symmetry) just too broad.
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We turn to the 3 classes of homothetic demand systems:

H.S.A. (Homothetic Single Aggregator)
HDIA (Homothetic Direct Implicit Additivity)
HITA (Homothetic Indirect Implicit Additivity)

e Pairwise disjoint with the sole exception of CES.

e PE can be written as {,, = ( (%) = (" (dq’:‘&)), where A (p) or A*(X) is

linear homogeneous, a sufficient statistic for the cross-variety effects.

Main Results: In each of these 3 classes,

e ¢'(V) > 0 < The 2" law.

e o' (V) % 0= L'(V) § 0. The converse is not true.

e L'V)=0&=0'(V)=0< () ={*(") = const., which occur iff CES.

HSA

Translog

Homothetic symmetric demand systems
with gross substitutes

The 3 classes offer a tractable way of capturing the intuition that gains from increasing variety is diminishing, if

varieties are more substitutable in the presence of more varieties.

The 3 classes also are useful as building blocks for more general (but not fully general) demand systems.
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Some Remarks Before Proceeding,
e This paper is all about the demand side of LV, hence applicable to a wide range of models.

e We deliberately make no assumption on the supply side. For example,

o Armington-type models, where each differentiated input (or consumer good) is produced and sold by competitive
producers, and the mass of available varieties, V, changes exogenously due to trade liberalization

o Central planning problems, where the benevolent planner chooses IV optimally subject to the innovation cost.

o Oligopoly models with a finite number of oligopolistic firms, each of which innovate and produce a continuum
range of varieties.

o Monopolistically competitive models, with a continuum of monopolistically competitive firms innovating and
producing zero measure of varieties and selling them with positive markups.

e Neither symmetry nor homotheticity are as restrictive as they look.
o By nesting symmetric homothetic demand systems into a upper-tier asymmetric/nonhomothetic demand system,
we can create an asymmetric/nonhomothetic demand system.

o Moreover, one key message is “Almost anything goes,” that symmetry/homotheticity restrictions are not
restrictive enough that we need to look for more restrictions to make further progress.
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General Symmetric Homothetic Demand Systems
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General Symmetric Homothetic (Input) Demand System: A Quick Refresher of Duality Theory
Consider homothetic demand systems for a continuum of differentiated inputs generated by symmetric CRS production
technology.

CRS Production Function Unit Cost Function
X(x) = min{px|P(p) = 1} P(p) = min{px|X(x) > 1}
) X

x = {x,; w € O}: the input quantity vector; p = {p,; w € Q}: the input price vector.
Q, a continuum of all potential input varieties. ) C Q, the set of available input varieties, with its mass V = [(].
O\Q: the set of unavailable varieties, x,, = 0 and p,, = o for w € Q\Q.
Inputs are inessential, i.e., O\ # @ doesn’t imply X(x) = 0 & P(p) = .
Duality Principle:
Either X(x) or P(p) can be a primitive, if linear homogeneity, monotonicity & strict quasi-concavity satisfied

Demand System:

Demand Curve (from Shepherd’s Lemma) Inverse Demand Curve
JdP(p) 0X(x)
= X(x =P
Yo = 5 (%) Pw = P(p) ox.

And, from Euler’s Homogenous Function Theorem,

oP 0X
pXx = JQ PeX,dw = JQ pw%X(x)da) = jﬂ P(p) ax(X) x,dw = P(p)X(x) = E.

The value of inputs is equal to the total value of output under CRS.
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Po¥o _ _ PoXw zﬁlnP(p)
px P(p)Xx Jdlnp,

= 5(Pw,P) = 2 nXx)

Budget Share of w € Q: S = 5" (x4, X)

dInx,

Under general CRS, little restrictions on s,, beyond homogeneity of degree zero in (p,,, p) or in (x,,X). 2 S, =
s(1,p/p,) = s*(1,x/x,), depends on the distribution of the prices (quantities) divided by its own price (quantity).

Definition: Gross Substitutability
dins Puws dIlns*(x ; X

>0
dinp, dlnx,
Price Elasticity of dlnx, d1Ins(p,;p) dlns*(x,: x)]
= — = . =1-— @’ =" X)) =1|1— @ 1.
Demand for w € () Sw dInp, {(Pw: D) dlnp, " (xe; X) dlnx, >

Under general CRS, little restrictions on ,,, beyond the homogeneity of degree zero in (p,, p) or in (x,,X). 2 {, =
((1,p/v,) = C°(1,x/x,), depends on the whole distribution of prices (quantities) divided by its own price (quantity).

Definition: The 2" Law of Demand
0 In ; dIn*(x,,;x
(PuiP) _ o, 00X %)
dInp, dInx,
Clearly, CES does not satisfy the 2" Law.

< 0.
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Substitutability Measure Across Different Varieties

Unit Quantity Vector: 1o = {(1a)w;w € Q}, where  (15),,

Unit Price Vector: 151 = {(151)(» ‘W E S_)}, where (15_11)w
Note: fﬂ (1g)pdw = fQ (151)wdw =1Q| =V.

At the symmetric patterns, p = p1g® and x = x1g,

{1 for we

0 for we\Q
{1 for we (0
o for w e\

s =5(L,p/pe) = 5" (1,x/%,) = s(1,15") =5 (1, 19) = 1/V

Cw =01, p/py) =" (L,x/x,) = {(1,15") = {"(1,10) > 1
Clearly, this depends only on V. We propose:

Definition: The substitutability measure across varieties is defined by

o) ={(L1g") =" (1;10) > 1.
We call the case of a’' (V) > (<)O0 for all V > 0, the case of increasing (decreasing) substitutability.

Alternatively, we can define the substitutability by the Allen-Uzawa elasticity of substitution btw w and w’,
AES(py,, D, P), at the symmetric patterns, p = p1g". It turns out that these definitions are equivalent because
o(V) = AES(p, p,p1g') = AES(1,1,131).

Note: In general, the 2™ Law is neither sufficient nor necessary for increasing substitutability, o’ (V) > 0.
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Love-for-Variety Measure: Commonly defined by the productivity gain from a higher V, holding xV

dIn X(x)
dlnV

dinxX(1g) _dInX(1q)
dlnV ~ dlnV

x=x1q,xV=const. xV=const.

>0

Alternatively, it may be defined by the decline in P(p) from a higher V, at p = p15*, holding p constant.

dIn P(p)
dinV

_ dinP(15")

dInV > 0.

p=p1g', p=const.

Both are functions of V only, and equivalent because, by applying X = x1, and p = p1g" to px = P(p)X (%),
dinP(15') dInX(1y)

dinV iy 1”0

pxV = pP(lal)xX(lg) = —

Definition. The love-for-variety measure is defined by:
dinP(15') dInX(1g)
dlnV dInV

LWV) = 1>0.

Note: L(V) > 0 is guaranteed by the strict quasi-concavity.

Page 13 of 44



Example: Standard CES with Gross Substitutes:

1

X() = U xwl‘adw] & o P(p)=§U Pwl_"dwr_a,
Q

where o > 1. (Z > 0 1s TFP or affinity in the preference, in the context of spatial economics)

Definition Under CES

Price Elasticit dInx . \
’ 0= =g = $PuiP) = (i) $(puiP) = §" (i) = 0> 1
w
Substitutability o) ={(1;15Y) = " (1;1g) o) =0>1
_for-vari —1 1
roverlor-variety coy = 40F (1) _dinXo) , _, L) =—=>0.
dInV dInV o—1

Under Standard CES,

e Price elasticity of demand, {(p,,; p) = {*(x,; X), is independent of p or X and equal to o.
e Substitutability, o(V), is independent of V and equal to o.

e Love-for-variety, L(1/), is independent of V, and equal to a constant, L(V) = L = 1/(o — 1), inversely related to o.

These properties do not hold under general homothetic demand systems.
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Example: Generalized CES with Gross Substitutes a la Benassy (1996).

o 1

1 1-0
1— j pwl—adw] )
Q

o—1 1
adw] S P(p) =<

X(x) = Z(V) [ jﬂ X, 707

Note: Z(1/) allows variety to have direct externalities to TFP (or affinity)

Definition Under Generalized CES
Price Elasticit dInx \ .
’ (o = =512 = (i P) = {" (X3 ) (PuiP) = "y X) = 0> 1
dInp,
Substitutability o) ={(1;15Y) = " (1; 1) o) =0>1
Love-for-variety dlnP(1:1 dlnX(1 1 dinZ(V)
LV) = (Q)= (Q)—1>0. LV) = + .
dInV dinV o—1 dInV

Under Generalized CES,

e Price Elasticity, {(p,; p) = {*(x,; X), and Substitutability, a(V), are not affected by d;nlrzlg/).

o d;nlig/v), the Benassy residual, “accounts for” the discrepancy between the LV implied by CES and the observed LV.

o Benassy (1996) set diinligfv) =V — ﬁ , so that L(V) = v is a separate parameter independent of o.
dinzZ(V)

o If we instead assume that is independent of o, L(V) is still inversely related to o.

dlnVv
Even if you believe in the Benassy residual, your estimate of its magnitude depends on the CES structure.
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General Homothetic Demand System: The relation btw {(p,,; p) = (" (x,;X), a(V), & L(V) can be complex.

e Whether Marshall’s 2™ Law holds or not says little about the derivatives of a(V) and L(V).

e 0(V)and L(V) could be positively related.

(Counter)Example: Weighted Geometric Mean of Standard Synmetric CES with Gross Substitutes:

X(x) = exp UoolnX(x; o) dF(o)|,
1

and F(-) isa c.d.f. of 0 € (1, ), satisfying [, dF (¢) = 1.

1 1
where [X(x; g)]l‘E = f xwl_E dw
Q

Definition Under Weighted Geometric Mean of CES
. o o 1 1

Price Elasticity (o = — olnx, _ 7*(x,; X) *(x;X) = Ep ((xw)‘%/(x(x; a))1_3> / Ep <(xw)_%/0(X(x; a))1‘3> >1

@ dInp, @’
Substitutability o(V) =7 (1;10) B 1

"= B!
Love-for-variety dIny(V) ( 1 )
= - - =E
L) i~ 1>0 L) = Ep(——) >0

e PE, {*(x,;X), is not constant, and violates the Marshall’s 2" Law.

e g(V) and L(V) are both constant, independent of V.

, 1
e The range of 6(V) and L(V) is 0 < (/)1

< L(V) < oo, where the equality holds iff F is degenerate.

e Easy to construct a parametric family of F, such that 6 (V) and L(V) are positively related.
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Three Classes of Symmetric Homothetic Demand Systems
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However, it is intuitive to think that, as input varieties are more substitutable,
¢ the price elasticity of demand for each variety become larger,
¢ the love-for-variety measure become smaller.

Homotheticity is too general to capture this intuition!!
It 1s NOT restrictive enough.

HSA

In search for additional restrictions to capture this intuition,
we turn to

Translog

@
Three Classes of Symmetric CRS Production Functions:

v Homothetic Single Aggregator (H.S.A.)
v Homothetic Direct Implicit Additivity (HDIA)
v Homothetic Indirect Implicit Additivity (HITA)

Homothetic symmetric demand systems
with gross substitutes

Page 18 of 44



3 Classes of Symmetric CRS Production Functions (with Gross Substitutes & Inessentiality)

Homothetic Direct Implicit Additivity (HDIA): 7%, X,
j q')( )dwzj o= dw =1

Q X(x) Q X(x)
¢(-): R, — R, is independent of Z > 0, TFP.
$(0) = 0; p(0) = o0; (1) > 0> ¢"(y), —yd"(¢)/d'(y) < 1, for Vy € (0, ).
CES with ¢(y) = (¢)1~1/°.
Homothetic Indirect Implicit Additivity (HITA): De B D B

7] dw = 0| = dw =1

o \ZP(p) a \P(p)
0(:): R,; = R, is independent of Z > 0 is TFP.
0(z)>0,0(5)<0<0"(z),—20"(5)/0'(z) >1for0<z3<z3<0&0(3)=0forz =7
CES with 8(3z) = (z)17°.
Homothetic Single Aggregator (H.S.A.): Two Equivalent Definitions

_0InP(p) (P with f S(Pw )da)=1 _0lnX(x)  ,/ x, with j *( X )d — 1
S0 = Gnp, _S<A(p)> o @) TS 50T Gy, S (A*(x)) VR

s(:): R, — R, is independent of Z > 0, TFP. s*(+): R, = R, is independent of Z > 0, TFP.
s(z)>0,5'(2) <0for0<z<zZ<o;s(z)=0forz =7 s*(0) =0,s"(y) >0, 0 <ys”(y)/s*"(y) < 1.
CES with s(z) = yz79. CES with s*(y) = y/o(y)1-1/0,

The definition of H.S.A. is independent of Z > 0, TFP, which shows up when we integrate the definition to obtain P(p) or X (x).

Page 19 of 44



Key Properties of the Three Classes

Budget Shares: Price Elasticity:
Swz"j;‘;n—’za‘?)ﬂ(pw;p) o= giEZZﬂ(Pw;P)

I vl o R ) ’

H.S.A. 5, =s (AIZOI;)) 7 # c, unless CES C<Ap(w)>; () =1 st(S) > 1

T P(p) (B(P)> b OIS CES | <(¢ 2 (B(p))) ) = ;;”(’@) &=

HIIA 5, = C?zal;) 0’ (PIZ;)) ’; gi # ¢, unless CES 7! (pp(;)>; (3) = —Zg,’ég) > 1.

A(p), B(p), C(p): all linear homogenous, determined implicitly by the adding-up constraint, [ s,dw = 1.

We focus on these three classes for two reasons.

e They are pairwise disjoint with the sole exception of CES.

. .. . _ Po \ — -+ *Xw " .
e Price elasticity can be written as {, = ( (—CA (p)) ={ (CA* (X)), where A(p) or A*(x) is linear homogenous, a

sufficient statistic, which captures all the cross-variety effects.
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Key Properties of the Three Classes, continued.

CES

H.S.A. HDIA HITA
Price Elasticity ¢ P : n—1( Pw I <pr )
P o (A(g))(z) G <(¢) 1(3@))) Ve (,)
{(z)=1- > 1 ¢’ () __397(z
s(2) {D(%)E_WZ@>1 (!(2) =~ > 1
Substitutability - l D(n-1(_ - 1
o(V) ’ Z<S 1(V>> (7)) ¢ (9 1(v)>
Love-for-Variety | 1 () 1 s 1 |
vy |o-1 “’(5 (v)) /) Ea (611N
- _ '@  a0'()
o)== [Lags0 | O EBWI=T0,m <t S =00

Main Results: In each of these 3 classes, Under H.S.A., HDIA, and HIIA,
e ¢'(V) > 0 iff the 2" law holds.

e o' (V) % 0 forallV >0= L'(V) é 0 forall V > 0. The converse is not true. But,
e L'V)=0&=0'(V)=0< () ={*(") = const., which occur iff CES.
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Homothetic Single Aggregator (H.S.A.)
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Symmetric H.S.A. (Homothetic Single Aggregator) DS with Gross Substitutes

Definition: A symmetric CRS technology, P = P(p) is called homothetic single aggregator (H.S.A.) if the budget
share of w depends solely on a single variable, z,, = p,, /A, its own price p,,, normalized by the common price
aggregator, A = A(p).

S pw%u:é”npﬁﬂzzs<pw) where f (1%))d 1
“~ px  dlnp, A(p)/ Ve YA

e s:R,, — R,: the budget share function, decreasing in the normalized price, z, = p,, /A for s(z,) > 0 with
o lim,_;s(z) = 0.If Z = inf{z > 0|s(z) = 0} < o0, ZA(p) is the choke price.

e A = A(p): the common price aggregator, defined implicitly by the adding-up constraint, | Q s(p,/A)dw = 1.

By construction, the budget shares add up to one. A(p) linear homogenous in p for a fixed Q. A larger Q reduces A(p).

Some Special Cases

CES with gross substitutes s(z) = yz1™¢; o>1
Translog Cost Function s(z) = ymax{—1In(z/2),0}; Z <
{ 15|15
Constant Pass Through s(z) = y max [0 —(c-1z°r ] :0} c>1;,0<p<1
(CoPaTh)

As p 7 1, CoPaTh converges to CES with Z = (L)E — 00,
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Price Elasticity: ’
rice Klasticity 2, = {(p,;p) =1 _L(Z‘“) =({(z,) >1
$(zw)

Notes:
e A function of a single variable, z,, = p,,/A(p).

e {(z,) = 0> 1lunder CES, s(z) = yz'~°.
e Marshall’s 2™ law iff ' (1) > 0, e.g., {(z,) =1 —

1
In(zy/2)

for translog; = d - for CoPaTh.

o—(oc-1)z,1-P)/P = 1—(z,/2)A-P)/pP

Unit Cost Function: By integrating OnP) _ ¢ (p—‘”),

dInp, A(p)
z
A(p) j (pw ) (pw ) 1 js(f)
—— =cex S D dw|, where ®(z) = d¢ > 0.
P~ <) ) aw) D= e
where ¢ > 0 is a constant, proportional to TFP.

Notes:
e P(p): linear homogeneous, monotonic, and strictly quasi-concave, ensuring the integrability of H.S.A.
e A(p)/P(p) is not constant and depends on p, with the sole exception of CES, because

dlnA(p) z,s'(z,) [((z,) — 1]s(z,) ) dInP(p) = s(z.)

INPo [ ' @u)zwde’ [ [§(z) = s(ze)de’ I10Po

unless {(z) is independent of z or s(z) = yz17? with {(z) = o > 1.
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For symmetric price patterns, p = p1g°,

_ { Dw B p _ 1 _ P 1 /1
1=s (A(p)) V=s (A(p151)> V=s (A(151)> V=t =g T aah S (V)

Hence,
Definition Under H.S.A.
Price Elasticity 0 ln x,, _ ( Pw )
= _ — . — % . = > 1,
(w — a In Do ((pa); p) { (xa); X) cw ( A(p)
Substitutability o) ={(1;15Y) = *(1;1g) c(V) =q(s71(1/V)) > 1
Love-for-variety LV = dinz(V) _ diny(V) {0 LWV)=o(s7(1/V)) > 0.
dlnV dlnV

Notes:
e At symmetric price patterns,

Ap)| | [A(ghH] ()
In [CP(p) = In [T]ﬁl) =o (S 1 (V)) — £(V)
e Since s~1(1/V) is increasing in V,
1
o) =¢ ( (v))

implies that Marshall’s 2™ law, {’(-) > 0, is equivalent to increasing substitutability, o’(-) > 0, under H.S.A.
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| 1 '(2) G
O'(V) — ( <S—1 (V))’ ,C(V) — & <S—1 (V))' where Z(Z) =1-— Zj(zj ; CD(Z) = S(Z) J SE

dé.

Lemma 1:

(' (z) % 0,Vz € (zy9,z) = P'(2) é 0,Vz € (zy,2).
Furthermore,
('(z) =0 & d'(z) =0 < CES.

From this,

Proposition 1
(' (z) % 0,Vz € (zy,2) & a' (V) % 0,vV € (1/s(zp), )
—
d'(z) é 0,Vz € (z4,z) & L' (V) é 0,VV € (1/s(zp), ).
Furthermore,

('@D=0=2d)=0=2d'(2) =0 L'(V) =0 < CES.

Thus, under H.S.A.,
e Marshall’s 2™ Law, {'(-) > 0 for all z < Z, is equivalent to increasing substitutability, a’(-) > 0 for all V.

e Increasing (decreasing) substitutability implies diminishing (increasing) love-for-variety. The converse is not true.
e Constant love-for-variety, constant substitutability, and constant price elasticity are all equivalent and occur iff CES.
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Homothetic Direct Implicit Additivity (HDIA)
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Symmetric HDIA (Homothetic Directly Implicitly Additive) DS with Gross Substitutes

Definition: A symmetric CRS technology, X = X(x) = ZX(X) is called homothetic with direct implicit additivity
(HDIA) with gross substitutes if it can be defined implicitly by:

[, #Gs) =, o) =

where ¢(-): R, = R, is independent of Z > 0, €3, with ¢(0) = 0; (o) = o0; ¢'(¢) > 0> ¢"' (1),
—y¢"'(y)/¢'(y) <1,Vy € (0, ).
e By construction, X(x) is independent of Z > 0, TFP.
If ¢'(0) < oo, the choke price is B(p)¢'(0). If ¢p'(0) = oo, no choke price.
CES with gross substitutes: ¢(¢) = (¢)*~1/9, (¢ > 1).
p

CoPaTh: ¢(y) = foy (1 + i(é)%p)p_l dé, 0 < p < 1, converging to CES with p 7 1.

e An extension of the Kimball (1995) aggregator in the sense that () is not fixed and V' = |Q] is a variable.
Inverse Demand Curve: Pw ¢,( X > o (wa> Demand Curve: ZXo _ Xo _ (cp’)‘l( Pw )

B(p) ' \X(®) X(x) X® X B(p)

Unit Cost Function:
YA

P®) = 7P =7 [ pu@) () do

where B(p) and P(p) are both independent of Z > 0 and

[[ (@ (22))

Il
=
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Budget Share:

PwXw

= ()" ( )— o '<x_w>
rore @ " o) e (75)

) EL 4 ( (x))
_ [ X | X CW(X)
<B<p))d‘” jg » (X(x))X(x) )

Budget share under HDIA: A function of the two relative prices, p,,/P(p) & p,,/B(p), or of the two relative
quantities, x,, /X (x) & x,,/C*(x), unless P(p)/B(p) = C*(x)/X(x) is a constant, which occurs iff CES.

Sw

where

satisfying the identity

W _[
B(p) Jq B(p)

Price Elasticity: N ¢’ (y,,) 5 b B |
Co = 0 (i) =~ = P(y,) = 0| @) (55) | = CPurp) > 1

e Price Elasticity, unlike the budget share, is a function of a single variable, 4, = x,,/X(X) or ¢'(4,) = p,,/B(p).
o {°(y4,) = 0 > 1under CES, ¢(y) = (¢)1"1/°

Notes:

p—1

e Marshall’s 2" law iff {2 (-) < 0, satisfied by (?(¢) = 1+ (6 — 1)(¢) » under CoPaTh.
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For symmetric quantity patterns, X = x1g,

(i)’ = = 7im = 6)
X(10) X(1q) v/

Hence,
Definition Under HDIA
Price Elasticity _ Olnx, N e x,, o { D
€0 =" Finp, ~ $PeiP) = (X0iX) $w=10" <X(x)) = ¢P ((qb )7! (B(p))> > 1,
Substitutability o(V) = ¢((1;15Y) = ¢*(1; 1) o(V) = P(p1(1/V)) > 1
Love-for-variety _ding(V)  dlngl) _ 1 _
B T i T W =g Giam 170
where
"(»)
0 < Ey(y) = %q(f(g <1
Notes:

e At symmetric quantity patterns, X = x1q,
P(15') cr(10) f ( 1 > ( 1 ) ( 1 ) B(15Y) X(1gp)
= — = Es |l = — dw = & ‘1(—> = — = =L(V) + 1.
B) - X o O \Faw)?\Faw \* W) T ) Toan Y
e Since ¢p~1(1/V) is decreasing in V,

a(V) = ¢P(p71(1/V))
implies that Marshall’s 2™ law, {?’(+) < 0, is equivalent to increasing substitutability, o’ () > 0, under HDIA.
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_ (-1 . _ 1 _ bon_ D) _y9'(y)
o(V) =P(¢~1(1/V)); LV) €@ 1(1/1) 1, where  (P(y) = 5 Es(y) = 500)
Hence,
Lemma 2:
P (y) S0,y € (0,40) = E,(y) S 0,vy € (0,4).
Furthermore,
P'(y) =0 = EL(y) =0 & CES.
From this,

Proposition 2:

P (y) S0vVy € (0,40) @ a' (V) 2 0,vV € (1/¢(g), )
-

Es(4) S 0,Vy € (0,0) & L'(V)S0,VV € (1/d(y0) , ).
Furthermore,

P'Y)=0 o' (V) =0 Ey(y) =0 < L'(V) =0 < CES.

Thus, under HDIA,

e Marshall’s 2" Law, {?’(-) < 0 for all 4 > 0, is equivalent to increasing substitutability, o' (-) > 0 for all V.
e Increasing (decreasing) substitutability implies diminishing (increasing) love-for-variety. The converse is not true.
e Constant love-for-variety, constant substitutability, and constant price elasticity are all equivalent and occur iff CES.
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Homothetic Indirect Implicit Additivity (HITIA)
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Symmetric HITA (Homothetic Indirectly Implicitly Additive) DS with Gross Substitutes

Definition: A symmetric CRS technology, P = P(p) = P(p)/Z, is called homothetic with indirect implicit additivity
(HITA) if it can be defined implicitly by:

Jﬂ 6 (Zlfz)p)) dw = jﬂ 0 (;Z;b) dw =1,

where 8: R, — R, is independent of Z > 0,3, with 8(z) > 0,0'(3) < 0,0"(z) > 0, — 30" (3)/8'(3) > 1, for
0(z) > 0 with lim,_,, 8(z) = o and lim__,: 8(z) = 0, where 5 = inf{z > 0|0(z) = 0}.

e By construction, P(p) is independent of Z > 0, TFP.

e If5 < o, P(p)Z = ZP(p)3 is the choke price. If Z = o0, no choke price.

e CES with gross substitutes: 8(z) = (z)}77, (¢ > 1).
p

P 1 p-1 1-p _ o \1-p :
e CoPaTh: 8(3) = gt-r fz/z((f) p— 1) d¢ forz < z = (—) ; 0 < p <1, convergingto CESas p 7 1.

o—1
Inverse Demand Po  _ pr _ (_0/)—1( ‘o ) Demand Yo _ _grf Po ) _ _ ,( Pw )> 0
Curve: ZP(p)  P(p) B'x)/ [Curve: | pr(x)— " \P(p))  ~ \ZP(p)
Production N et [ X
Function: X(x) =ZX(x) = Zjﬂ (—6") (—B*(X)> X dw

where X (x) and B*(x) are both independent of Z > 0 and

jﬂ 9 ((—9')-1 (sz“x)» dw = 1.
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Budget Share: PoXw _ g1 Ko N\ Xo _ ,( Puw ) Puw
rore - Tt - )

— / Pw
cor==] o (P<p>>”“’d‘”>0

where

satisfying the identity,

@ _[ [ A
p(p)—L P(p) 0<P<p>>] J(“ ) Fe™ =5

Budget share under HIIA: A function of two relative prices, p,, /P(p) and p,,/C(p), or of two relative quantities,
x,/X(x) and x,,/B*(x), unless C(p)/P(p) = X(x)/B*(x) is a constant, which occurs iff CES.

Price Elasticity: 0" (3, “
G = S = =220 20 = (g, = ¢ <(—e'>-1 (Bf(x))> = " ) > 1

Notes:
e Price Elasticity, unlike the budget share, is a function of a single variable, z,, = p,,/P(p) or x,,/B*(x) = —0'(z,,).
e {!(z,) =0 > 1under CES, 0(3) = (2)179, (6 > 1).

) nd . Ir . I _ o) _ 1
e Marshall’s 2" law iff {*'(z,,) > 0, satisfied by {*(z,,) = Pty Cay il R V7 under CoPaTh.

Page 34 of 44




For symmetric price patterns, p = p1g°,

1 1
0| = V=1== =6-1(1/V).
(P(151)> pagy 0 W
Hence,
Definition Under HITA
Frice Blasticlty o=~ T = (i) = € (i ) ¢ ( T > o (5reg) )71
w — - w’ - w’ w = — = -0~ " >
Substitutability o(V) =151 =7 (1; 1) o(V) = (’(9‘1(1/V)) > 1
for-vari dlnz(V dl 14
Love-for-variety L) = dnlig/) _ ;14;/1’; ) 1>0 L) = ) >0
where
z0'(z)
E = — > 0.
0(2) 02
Notes:

e At symmetric price patterns, p = p1g',

c(1g') X9 1 1 B (1 _P(15Y) Br(1p)
= ran ™, & (Fazm)? (pazm) o =% (0 (7)) = 20 =2 = 7

e Since 871(1/V) is increasing in V,

a(V)=¢'(671(1/V))
implies that Marshall’s 2" law, {!'(+) > 0, is equivalent to increasing substitutability, ¢'(-) > 0, under HIIA.
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o(V) =(071(1/V)); L(V) = ! where  (1(5) = _30"(z) £,(2) = _30'(2)

Eo(671(1/V)) 0'(z) 0(z)
Hence,
Lemma 3:
'(2)20,Vz € (30,2) = Ey(z) 20,Vz € (20,7).
Furthermore,
'(z)=0 o €&j(z) =0 CES.
From this,

Proposition 3:

("' (2) 20,Vz € (30,2) ' (V) Z0,VV € (1/6(z,), )
e

£4(3) 2 0,Vz € (30,2) © L' (V) S 0,VV € (1/0(3) , ).
Furthermore,

"(2)=0 ©d¥)=0E)z)=0 & L'(V) =0 < CES.

Under HIIA,

e Marshall’s 2" Law, {'(-) < 0 for all z < 7, is equivalent to increasing substitutability, o’'(-) > 0 for all V.
e Increasing (decreasing) substitutability implies diminishing (increasing) love-for-variety. The converse is not true.
e Constant love-for-variety, constant substitutability, and constant price elasticity are all equivalent and occur iff CES.
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Appendix C: An Alternative (and Equivalent) Definition of H.S.A.

Definition: A symmetric CRS technology, X= X(x) is called homothetic single aggregator (H.S.A.) if the budget
share of w depends solely on a single variable, y,, = x,, /A", its own quantity x,,, normalized by the common
quantity aggregator, A* = A*(x).

. pwxwzalnX(X)=S*< X4 ) where j *( X )d _ 4
“7 px d1nx,, A*(x)/)’ 5 S\ax) Y =

<1, s*(0) =0, s"(0) = 0.

dins*(y)
diny

o s":R,, — R,:the budget share function, iny,, = x,/A* with 0 < Es+(y) =

e A* = A*(x): the common quantity aggregator, defined by the adding-up constraint, | q S"(xy/A%)dw = 1By

construction, the budget shares add up to one. A*(x) linear homogenous in X for a fixed Q. A larger () increases A*.

Price Elasticity: ) dins*(y,) ] o
Cw=F¢ (xw;X)—ll— any, = {*(y,) > 1,
Notes:
e Also a function of a single variable, y,, = x,, /A" (X).
e {*(y) =0 > 1lunder CES, s*(y) =y (y)t-1/0o,
e Marshall’s 2™ law, 0 (x,;x)/0x, < 0, holds iff {*'(-) < 0.
dins*(y)

e The choke price exists iff lim s* (y) < oo, which implies lim = 1 and hence lim {*(y) = co. For example,
y—0 y—0 diny y—0

translog corresponds to s*(y), defined implicitly by s* exp(s*/y) = Zy, for Z < oo,
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A*(X) = ¢ exp l s (Aicg)x)) ¢ (Aicg)x)) daw

where

G PN G S L
NOFERS fols* ) /yldgs

dIns*(y)
diny

O (y) =

and ¢* > 0 is a constant, proportional to TFP. ®*(y) > 1 follows from E.(y) =

is decreasing in y.

Notes:
e X(x), lincar homogeneous, monotonic, and strictly quasi-concave, ensuring the integrability of H.S.A.
e X(x)/A*(x)is not constant and depends on X, with the sole exception of CES, because

1 )
oA () yuS W) _ [1‘ w)]”yw) L 9InX()
dlnx,

f s* (yw )ywlda) f []_ {( w) S*(yw')da)’ alnxa)

unless {*(y) is independent of y or s*(y) = y¥/? (1)1~ with *(y) = o > 1.

= S*(Yw);

< 1 implying that s*(y)/y
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For symmetric quantity patterns, X = x1g,

L=s (m) V=< (A*<119>) V= e

A*(11Q) = (%)

Hence,
Definition Under H.S.A.
Price Bty | ¢, =~ 222 — (i) = (i) =8 (7)1
Substitutability o) ={(1;15Y) = " (1;1g) o(V) = (s (1/V)) > 1
Love-for-variety LYY = dnz(V) _ dlny(V) B 0 LWV) =o*(s*(1/V))—1>0.
dInV dInV

Notes:
e At the symmetric quantity patterns,

ln[ X() = ¢* <s*‘1 (l>> =L(V)+1

c*A*(X) %4 '

e Since s* 1(1/V) is decreasing in V,

()

implies that Marshall’s 2™ law, {*'(+) < 0, is equivalent to increasing substitutability, ¢'(-) > 0.
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1 1 ey 11 AR
O'(V) = (* (5*—1 (V))' L(V) = p* <S*—1 (V)) —1, where Z*(Y) = [1 _ M‘ ; q)*(y) _ 1 S (f )df*

dlny s
Lemma 1%
() S0,¥y € (0,y0) = @ () Z0,Vy € (0, ).
Furthermore,
" (y) =0 < &' (y) = 0 < CES.
From this,

Proposition 1*

() S0,vy € (0,y,) & ' (V) Z0,vV € (1/5*(y), )
—

d'(y) 2 0,vy € (0,y,) © L' (V) S 0,VV € (1/s* (), )
Furthermore,

(") =0=d(V)=0 dY(y) =0 L'(V) =0 < CES.

Thus, under H.S.A.,

e Marshall’s 2™ Law, {*'(-) < 0 for all y > 0 is equivalent to increasing substitutability, o’ (-) > 0 for all V.
e Increasing (decreasing) substitutability implies diminishing (increasing) love-for-variety. The converse is not true.
e Constant love-for-variety, constant substitutability, and constant price elasticity are all equivalent and occur iff CES.
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Equivalence of the Two Definitions of H.S.A.

Under the isomorphism given by the one-to-one mapping btw s(z) <« s*(y), defined by:

s*(y) =s (Sl(ly)>; s(z) =s* (S(—Z)>

Z
From this,
o dIns*(y) - B d1lns(z)
C(y)=[1— diny ={@)=1-—7——
_dns*(y) _dlns(z)
Vo = X, /A% (X),and z,, = p,, /A(pP), are negatively related as
LSO s
C Y Yz
d d d 1 d
Do _ iy o LB 1 v,
Yo Zw Zw Vo) Yo
and
Zy(' (Zy)

7 - - a)=_*a) 0.
Yo §* V) law) = =¢"0) <
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If lir% s*(y) < oo, lirr(l) {*(y) = oo and the (normalized) choke price is:
y- y-

}]i_rg% = Jlli_r)rcl) s(y)=z=inf{z > 0]s(z) =0} < o
Moreover,
PoXe ) PwXe
Ao Yere =30 =500 = g

hence we have the identity,

AP) _ XX
P(p) A*(x)

¢ exp Uﬂ S(zw)cb(zw)dw] — = c" exp lJ " (V)P (V) dw]
Q

which 1s a constant 1ff CES.

Furthermore, using

[ @)—Q d§

ds* [s'9) ] dé
g
f=zo 8=y =708 =0,
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* 1 st 5 e _ 1 7 s(@) s©)
CID(y)—CID(Z)zs*( )O f d S(Z)J Tl[ (f)__ df_ J df 1.

£ s(2)
Since
w©) = — s Hao@we =22
[lsgn /€ de’ ¢
" (&) /& (£
ES * E ES q)* ES * — )
w (&) Pl )/ a8 = sT()e (v () :

this implies

Ew(é) =<I>*(y)=1+ [ )
Ewr(é)  P(2) ®(z) P*(y)-1

= exp lj [s* (V)P Vo) — S(Zw)q)(zw)]dw] = exp lj S(Zw)da)] = €.

Q
and

LWV)=d(s71(1/V)) = d*(s*1(1/V)) - 1.
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